The effects of acylation stimulating protein supplementation VS antibody neutralization on energy expenditure in wildtype mice. Paglialunga, S; Fisette, A; Munkonda, M; Gao, Y; Richard, D; Cianflone, K BMC physiology
10
4
2010
概要を表示する
Acylation stimulating protein (ASP) is an adipogenic hormone that stimulates triglyceride (TG) synthesis and glucose transport in adipocytes. Previous studies have shown that ASP-deficient C3 knockout mice are hyperphagic yet lean, as they display increased oxygen consumption and fatty acid oxidation compared to wildtype mice. In the present study, antibodies against ASP (Anti-ASP) and human recombinant ASP (rASP) were tested in vitro and in vivo. Continuous administration for 4 weeks via osmotic mini-pump of Anti-ASP or rASP was evaluated in wildtype mice on a high-fat diet (HFD) to examine their effects on body weight, food intake and energy expenditure.In mature murine adipocytes, rASP significantly stimulated fatty acid uptake (+243% vs PBS, P < 0.05) while Anti-ASP neutralized the rASP response. Mice treated with Anti-ASP showed elevated energy expenditure (P < 0.0001), increased skeletal muscle glucose oxidation (+141%, P < 0.001), reduced liver glycogen (-34%, P < 0.05) and glucose-6-phosphate content (-64%, P = 0.08) compared to control mice. There was no change in body weight, food intake, fasting insulin, adiponectin, CRP or TG levels compared to controls. Interestingly, HFD mice treated with rASP showed the opposite phenotype with reduced energy expenditure (P < 0.0001) and increased body weight (P < 0.05), cumulative food intake (P < 0.0001) and liver glycogen content (+59%, P < 0.05). Again, there was no change in circulating insulin, adiponectin, CRP or TG levels, however, plasma free fatty acids were reduced (-48%, P < 0.05).In vitro, Anti-ASP effectively neutralized ASP stimulated fatty acid uptake. In vivo, Anti-ASP treatment increased whole body energy utilization while rASP increased energy storage. Therefore, ASP is a potent anabolic hormone that may also be a mediator of energy expenditure. | 20416070
|
Acylation-stimulating protein/C5L2-neutralizing antibodies alter triglyceride metabolism in vitro and in vivo. Cui, W; Paglialunga, S; Kalant, D; Lu, H; Roy, C; Laplante, M; Deshaies, Y; Cianflone, K American journal of physiology. Endocrinology and metabolism
293
E1482-91
2007
概要を表示する
Acylation-stimulating protein (ASP), a lipogenic hormone, stimulates triglyceride (TG) synthesis and glucose transport upon activation of C5L2, a G protein-coupled receptor. ASP-deficient mice have reduced adipose tissue mass due to increased energy expenditure despite increased food intake. The objective of this study was to evaluate the blocking of ASP-C5L2 interaction via neutralizing antibodies (anti-ASP and anti-C5L2-L1 against C5L2 extracellular loop 1). In vitro, anti-ASP and anti-C5L2-L1 blocked ASP binding to C5L2 and efficiently inhibited ASP stimulation of TG synthesis and glucose transport. In vivo, neither anti-ASP nor anti-C5L2-L1 altered body weight, adipose tissue mass, food intake, or hormone levels (insulin, leptin, and adiponectin), but they did induce a significant delay in TG clearance [P < 0.0001, 2-way repeated-measures (RM) ANOVA] and NEFA clearance (P < 0.0001, 2-way RM ANOVA) after a fat load. After treatment with either anti-ASP or anti-C5L2-L1 antibody there was no change in adipose tissue AMPK activity, but neutralizing antibodies decreased perirenal TG mass (-38.4% anti-ASP, -18.8% anti-C5L2, P < 0.01-0.001) and perirenal LPL activity (-75.6% anti-ASP, -72.5% anti-C5L2, P < 0.05). In liver, anti-C5L2-L1 decreased TG mass (-42.8%, P < 0.05), whereas anti-ASP increased AMPK activity (+34.6%, P < 0.001). In the muscle, anti-C5L2-L1 significantly increased TG mass (+128.0%, P < 0.05), LPL activity (+226.1%, P < 0.001), and AMPK activity (+71.1%, P < 0.01). In addition, anti-ASP increased LPL activity (+164.4, P < 0.05) and AMPK activity (+53.9%, P < 0.05) in muscle. ASP/C5L2-neutralizing antibodies effectively block ASP-C5L2 interaction, altering lipid distribution and energy utilization. | 17711993
|
Coordinated release of acylation stimulating protein (ASP) and triacylglycerol clearance by human adipose tissue in vivo in the postprandial period. Saleh, J; Summers, LK; Cianflone, K; Fielding, BA; Sniderman, AD; Frayn, KN Journal of lipid research
39
884-91
1998
概要を表示する
The objective of this study was to determine whether Acylation Stimulating Protein (ASP) is generated in vivo by human adipose tissue during the postprandial period. After a fat meal, samples from 12 subjects were obtained (up to 6 h) from an arterialized hand vein and an anterior abdominal wall vein that drains adipose tissue. Veno-arterial (V-A) gradients across the subcutaneous adipose tissue bed were calculated. The data demonstrate that ASP is produced in vivo (positive V-A gradient) With maximal production at 3-5 h postprandially. The plasma triacylglycerol (TAG) clearance was evidenced by a negative V-A gradient. It increased substantially after 3 h and remained prominent until the final time point. There was, therefore, a close temporal coordination between ASP generation and TAG clearance. In contrast, plasma insulin and non-esterified fatty acid (NEFA) had an early (1-2 h) postprandial change. Fatty acid incorporation into adipose tissue (FIAT) was calculated from V-A glycerol and non-esterified fatty acid (NEFA) differences postprandially. FIAT was negative during the first hour, implying net fat mobilization. FIAT then became increasingly positive, implying net fat deposition, and overall followed the same time course as ASP and TAG clearance. There was a direct positive correlation between total ASP production and total FIAT (r = 0.566, P < 0.05). These data demonstrate that ASP is generated in vivo by human adipocytes and that this process is accentuated postprandially, supporting the concept that ASP plays an important role in clearance of TAG from plasma and fatty acid storage in adipose tissue. | 9555951
|