Promoter occupancy of STAT1 in interferon responses is regulated by processive transcription. Wiesauer, I; Gaumannmüller, C; Steinparzer, I; Strobl, B; Kovarik, P Molecular and cellular biology
35
716-27
2015
Show Abstract
Interferons regulate immunity by inducing DNA binding of the transcription factor STAT1 through Y701 phosphorylation. Transcription by STAT1 needs to be restricted to minimize the adverse effects of prolonged immune responses. It remains unclear how STAT1 inactivation is regulated such that the transcription output is adequate. Here we show that efficient STAT1 inactivation in macrophages is coupled with processive transcription. Ongoing transcription feeds back to reduce the promoter occupancy of STAT1 and, consequently, the transcriptional output. Once released from the promoter, STAT1 is ultimately inactivated by Y701 dephosphorylation. We observe similar regulation for STAT2 and STAT3, suggesting a conserved inactivation mechanism among STATs. These findings reveal that STAT1 promoter occupancy in macrophages is regulated such that it decreases only after initiation of the transcription cycle. This feedback control ensures the fidelity of cytokine responses and provides options for pharmacological intervention. | | 25512607
|
STAT2/IRF9 directs a prolonged ISGF3-like transcriptional response and antiviral activity in the absence of STAT1. Blaszczyk, K; Olejnik, A; Nowicka, H; Ozgyin, L; Chen, YL; Chmielewski, S; Kostyrko, K; Wesoly, J; Balint, BL; Lee, CK; Bluyssen, HA The Biochemical journal
466
511-24
2015
Show Abstract
Evidence is accumulating for the existence of a signal transducer and activator of transcription 2 (STAT2)/interferon regulatory factor 9 (IRF9)-dependent, STAT1-independent interferon alpha (IFNα) signalling pathway. However, no detailed insight exists into the genome-wide transcriptional regulation and the biological implications of STAT2/IRF9-dependent IFNα signalling as compared with interferon-stimulated gene factor 3 (ISGF3). In STAT1-defeicient U3C cells stably overexpressing human STAT2 (hST2-U3C) and STAT1-deficient murine embryonic fibroblast cells stably overexpressing mouse STAT2 (mST2-MS1KO) we observed that the IFNα-induced expression of 2'-5'-oligoadenylate synthase 2 (OAS2) and interferon-induced protein with tetratricopeptide repeats 1 (Ifit1) correlated with the kinetics of STAT2 phosphorylation, and the presence of a STAT2/IRF9 complex requiring STAT2 phosphorylation and the STAT2 transactivation domain. Subsequent microarray analysis of IFNα-treated wild-type (WT) and STAT1 KO cells overexpressing STAT2 extended our observations and identified ∼120 known antiviral ISRE-containing interferon-stimulated genes (ISGs) commonly up-regulated by STAT2/IRF9 and ISGF3. The STAT2/IRF9-directed expression profile of these IFN-stimulated genes (ISGs) was prolonged as compared with the early and transient response mediated by ISGF3. In addition, we identified a group of 'STAT2/IRF9-specific' ISGs, whose response to IFNα was ISGF3-independent. Finally, STAT2/IRF9 was able to trigger an antiviral response upon encephalomyocarditis virus (EMCV) and vesicular stomatitis Indiana virus (VSV). Our results further prove that IFNα-activated STAT2/IRF9 induces a prolonged ISGF3-like transcriptome and generates an antiviral response in the absence of STAT1. Moreover, the existence of 'STAT2/IRF9-specific' target genes predicts a novel role of STAT2 in IFNα signalling. | | 25564224
|
Adenovirus detection by the cGAS/STING/TBK1 DNA sensing cascade. Lam, E; Stein, S; Falck-Pedersen, E Journal of virology
88
974-81
2014
Show Abstract
Adenovirus (Ad) infection triggers a cell-specific antiviral response following exposure of viral DNA to the intracellular compartment. A variety of DNA sensors (DAI, AIM2, DDx41, RNA polymerase [Pol] III, and IFI16 [p204]) have been identified in recent years; however, the DNA sensor involved in detection of adenovirus has not been established. Cyclic GMP-AMP synthase (cGAS), a DNA sensor that produces a cyclic guanine-adenine dinucleotide (cGAMP) inducer of STING, has been examined to determine its role in generating an antiadenoviral response. Short hairpin RNA (shRNA) lentiviral vectors targeting TBK1, STING, and cGAS were established in murine MS1 endothelial and RAW 264.7 macrophage cell lines. Knockdown of TBK1, STING, and cGAS results in a dramatic reduction in the activation of the primary antiviral response marker phosphorylated interferon (IFN) response factor 3 (IRF3) following exposure to adenovirus. Furthermore, activation of secondary type I IFN signaling targets ((ptyr)STAT1 and (ptyr)STAT2 [(ptyr)STAT1/2]) was also compromised. Consistent with compromised activation of primary and secondary response markers, transcriptional activation of IRF3-responsive genes (beta IFN [IFN-β], ISG15, ISG54) and secondary response transcripts were diminished in cells knocked down in cGAS, STING, or TBK1. These data establish cGAS as the dominant cytosolic DNA sensor responsible for detection of internalized adenovirus leading to induction of the type I interferon antiviral cascade. | Western Blotting | 24198409
|
Silencing of IFN-stimulated gene transcription is regulated by histone H1 and its chaperone TAF-I. Kadota, S; Nagata, K Nucleic Acids Res
42
7642-53
2014
Show Abstract
Chromatin structure and its alteration play critical roles in the regulation of transcription. However, the transcriptional silencing mechanism with regard to the chromatin structure at an unstimulated state of the interferon (IFN)-stimulated gene (ISG) remains unclear. Here we investigated the role of template activating factor-I (TAF-I, also known as SET) in ISG transcription. Knockdown (KD) of TAF-I increased ISG transcript and simultaneously reduced the histone H1 level on the ISG promoters during the early stages of transcription after IFN stimulation from the unstimulated state. The transcription factor levels on the ISG promoters were increased in TAF-I KD cells only during the early stages of transcription. Furthermore, histone H1 KD also increased ISG transcript. TAF-I and histone H1 double KD did not show the additive effect in ISG transcription, suggesting that TAF-I and histone H1 may act on the same regulatory pathway to control ISG transcription. In addition, TAF-I KD and histone H1 KD affected the chromatin structure near the ISG promoters. On the basis of these findings, we propose that TAF-I and its target histone H1 are key regulators of the chromatin structure at the ISG promoter to maintain the silent state of ISG transcription. | | 24878923
|
The helicase HAGE prevents interferon-α-induced PML expression in ABCB5+ malignant melanoma-initiating cells by promoting the expression of SOCS1. Mathieu, MG; Miles, AK; Ahmad, M; Buczek, ME; Pockley, AG; Rees, RC; Regad, T Cell death & disease
5
e1061
2014
Show Abstract
The tumour suppressor PML (promyelocytic leukaemia protein) regulates several cellular pathways involving cell growth, apoptosis, differentiation and senescence. PML also has an important role in the regulation of stem cell proliferation and differentiation. Here, we show the involvement of the helicase HAGE in the transcriptional repression of PML expression in ABCB5+ malignant melanoma-initiating cells (ABCB5+ MMICs), a population of cancer stem cells which are responsible for melanoma growth, progression and resistance to drug-based therapy. HAGE prevents PML gene expression by inhibiting the activation of the JAK-STAT (janus kinase-signal transducers and activators of transcription) pathway in a mechanism which implicates the suppressor of cytokine signalling 1 (SOCS1). Knockdown of HAGE led to a significant decrease in SOCS1 protein expression, activation of the JAK-STAT signalling cascade and a consequent increase of PML expression. To confirm that the reduction in SOCS1 expression was dependent on the HAGE helicase activity, we showed that SOCS1, effectively silenced by small interfering RNA, could be rescued by re-introduction of HAGE into cells lacking HAGE. Furthermore, we provide a mechanism by which HAGE promotes SOCS1 mRNA unwinding and protein expression in vitro. Finally, using a stem cell proliferation assay and tumour xenotransplantation assay in non-obese diabetic/severe combined immunodeficiency mice, we show that HAGE promotes MMICs-dependent tumour initiation and tumour growth by preventing the anti-proliferative effects of interferon-α (IFNα). Our results suggest that the helicase HAGE has a key role in the resistance of ABCB5+ MMICs to IFNα treatment and that cancer therapies targeting HAGE may have broad implications for the treatment of malignant melanoma. | | 24525737
|
Modulation of TNF-induced macrophage polarization by synovial fibroblasts. Donlin, LT; Jayatilleke, A; Giannopoulou, EG; Kalliolias, GD; Ivashkiv, LB Journal of immunology (Baltimore, Md. : 1950)
193
2373-83
2014
Show Abstract
Mesenchymal stromal cells have emerged as powerful modulators of the immune system. In this study, we explored how the human macrophage response to TNF is regulated by human synovial fibroblasts, the representative stromal cell type in the synovial lining of joints that become activated during inflammatory arthritis. We found that synovial fibroblasts strongly suppressed TNF-mediated induction of an IFN-β autocrine loop and downstream expression of IFN-stimulated genes (ISGs), including chemokines CXCL9 and CXCL10 that are characteristic of classical macrophage activation. TNF induced the production of soluble synovial fibroblast factors that suppressed the macrophage production of IFN-β, and cooperated with TNF to limit the responsiveness of macrophages to IFN-β by suppressing activation of Jak-STAT signaling. Genome-wide transcriptome analysis showed that cocultured synovial fibroblasts modulate the expression of approximately one third of TNF-regulated genes in macrophages, including genes in pathways important for macrophage survival and polarization toward an alternatively activated phenotype. Pathway analysis revealed that gene expression programs regulated by synovial fibroblasts in our coculture system were also regulated in rheumatoid arthritis synovial macrophages, suggesting that these fibroblast-mediated changes may contribute to rheumatoid arthritis pathogenesis. This work furthers our understanding of the interplay between innate immune and stromal cells during an inflammatory response, one that is particularly relevant to inflammatory arthritis. Our findings also identify modulation of macrophage phenotype as a new function for synovial fibroblasts that may prove to be a contributing factor in arthritis pathogenesis. | | 25057003
|
Dual modulation of type I interferon response by bluetongue virus. Doceul, V; Chauveau, E; Lara, E; Bréard, E; Sailleau, C; Zientara, S; Vitour, D Journal of virology
88
10792-802
2014
Show Abstract
Bluetongue virus (BTV) is a double-stranded RNA (dsRNA) virus that causes an economically important disease in ruminants. BTV infection is a strong inducer of type I interferon (IFN-I) in multiple cell types. It has been shown recently that BTV and, more specifically, the nonstructural protein NS3 of BTV are able to modulate the IFN-I synthesis pathway. However, nothing is known about the ability of BTV to counteract IFN-I signaling. Here, we investigated the effect of BTV on the IFN-I response pathway and, more particularly, the Janus tyrosine kinase (JAK)/signal transducer and activator of transcription protein (STAT) signaling pathway. We found that BTV infection triggered the expression of IFN-stimulated genes (ISGs) in A549 cells. However, when BTV-infected cells were stimulated with external IFN-I, we showed that activation of the IFN-stimulated response element (ISRE) promoter and expression of ISGs were inhibited. We found that this inhibition involved two different mechanisms that were dependent on the time of infection. After overnight infection, BTV blocked specifically the phosphorylation and nuclear translocation of STAT1. This inhibition correlated with the redistribution of STAT1 in regions adjacent to the nucleus. At a later time point of infection, BTV was found to interfere with the activation of other key components of the JAK/STAT pathway and to induce the downregulation of JAK1 and TYK2 protein expression. Overall, our study indicates for the first time that BTV is able to interfere with the JAK/STAT pathway to modulate the IFN-I response.Bluetongue virus (BTV) causes a severe disease in ruminants and has an important impact on the livestock economy in areas of endemicity such as Africa. The emergence of strains, such as serotype 8 in Europe in 2006, can lead to important economic losses due to commercial restrictions and prophylactic measures. It has been known for many years that BTV is a strong inducer of type I interferon (IFN-I) in vitro and in vivo in multiple cell types. However, the ability of BTV to interact with the IFN-I system remains unclear. Here, we report that BTV is able to modulate the IFN-I response by interfering with the Janus tyrosine kinase (JAK)/signal transducer and activator of transcription protein (STAT) signaling pathway. These findings contribute to knowledge of how BTV infection interferes with the host's innate immune response and becomes pathogenic. This will also be important for the design of efficacious vaccine candidates. | | 25008919
|
Identification of STAT2 serine 287 as a novel regulatory phosphorylation site in type I interferon-induced cellular responses. Steen, HC; Nogusa, S; Thapa, RJ; Basagoudanavar, SH; Gill, AL; Merali, S; Barrero, CA; Balachandran, S; Gamero, AM The Journal of biological chemistry
288
747-58
2013
Show Abstract
STAT2 is a positive modulator of the transcriptional response to type I interferons (IFNs). STAT2 acquires transcriptional function by becoming tyrosine phosphorylated and imported to the nucleus following type I IFN receptor activation. Although most STAT proteins become dually phosphorylated on specific tyrosine and serine residues to acquire full transcriptional activity, no serine phosphorylation site in STAT2 has been reported. To find novel phosphorylation sites, mass spectrometry of immunoprecipitated STAT2 was used to identify several phosphorylated residues. Of these, substitution of serine 287 with alanine (S287A) generated a gain-of-function mutant that enhanced the biological effects of IFN-α. S287A-STAT2 increased cell growth inhibition, prolonged protection against vesicular stomatitis virus infection and enhanced transcriptional responses following exposure of cells to IFN-α. In contrast, a phosphomimetic STAT2 mutant (S287D) produced a loss-of-function protein that weakly activated IFN-induced ISGs. Our mechanistic studies suggest that S287A-STAT2 likely mediates its gain-of-function effects by prolonging STAT2/STAT1 dimer activation and retaining it in transcriptionally active complexes with chromatin. Altogether, we have uncovered that in response to type I IFN, STAT2 is serine phosphorylated in the coiled-coil domain that when phosphorylated can negatively regulate the biological activities of type I IFNs. | | 23139419
|
Interferon-lambda (IFN-λ) induces signal transduction and gene expression in human hepatocytes, but not in lymphocytes or monocytes. Dickensheets, H; Sheikh, F; Park, O; Gao, B; Donnelly, RP Journal of leukocyte biology
93
377-85
2013
Show Abstract
This study compared the ability of IFN-α and IFN-λ to induce signal transduction and gene expression in primary human hepatocytes, PBLs, and monocytes. IFN-α drug products are widely used to treat chronic HCV infection; however, IFN-α therapy often induces hematologic toxicities as a result of the broad expression of IFNARs on many cell types, including most leukocytes. rIFN-λ1 is currently being tested as a potential alternative to IFN-α for treating chronic HCV. Although IFN-λ has been shown to be active on hepatoma cell lines, such as HepG2 and Huh-7, its ability to induce responses in primary human hepatocytes or leukocytes has not been examined. We found that IFN-λ induces activation of Jak/STAT signaling in mouse and human hepatocytes, and the ability of IFN-λ to induce STAT activation correlates with induction of numerous ISGs. Although the magnitude of ISG expression induced by IFN-λ in hepatocytes was generally lower than that induced by IFN-α, the repertoire of regulated genes was quite similar. Our findings demonstrate that although IFN-α and IFN-λ signal through distinct receptors, they induce expression of a common set of ISGs in hepatocytes. However, unlike IFN-α, IFN-λ did not induce STAT activation or ISG expression by purified lymphocytes or monocytes. This important functional difference may provide a clinical advantage for IFN-λ as a treatment for chronic HCV infection, as it is less likely to induce the leukopenias that are often associated with IFN-α therapy. | | 23258595
|
Stat2 loss leads to cytokine-independent, cell-mediated lethality in LPS-induced sepsis. Alazawi, William, et al. Proc. Natl. Acad. Sci. U.S.A., 110: 8656-61 (2013)
2013
Show Abstract
Deregulated Toll-like receptor (TLR)-triggered inflammatory responses that depend on NF-κB are detrimental to the host via excessive production of proinflammatory cytokines, including TNF-α. Stat2 is a critical component of type I IFN signaling, but it is not thought to participate in TLR signaling. Our study shows that LPS-induced lethality in Stat2(-/-) mice is accelerated as a result of increased cellular transmigration. Blocking intercellular adhesion molecule-1 prevents cellular egress and confers survival of Stat2(-/-) mice. The main determinant of cellular egress in Stat2(-/-) mice is the genotype of the host and not the circulating leukocyte. Surprisingly, lethality and cellular egress observed on Stat2(-/-) mice are not associated with excessive increases in classical sepsis cytokines or chemokines. Indeed, in the absence of Stat2, cytokine production in response to multiple TLR agonists is reduced. We find that Stat2 loss leads to reduced expression of NF-κB target genes by affecting nuclear translocation of NF-κB. Thus, our data reveal the existence of a different mechanism of LPS-induced lethality that is independent of NF-κB triggered cytokine storm but dependent on cellular egress. | | 23653476
|