Functionally distinct PI 3-kinase pathways regulate myelination in the peripheral nervous system. Heller, BA; Ghidinelli, M; Voelkl, J; Einheber, S; Smith, R; Grund, E; Morahan, G; Chandler, D; Kalaydjieva, L; Giancotti, F; King, RH; Fejes-Toth, AN; Fejes-Toth, G; Feltri, ML; Lang, F; Salzer, JL The Journal of cell biology
204
1219-36
2014
Afficher le résumé
The PI 3-kinase (PI 3-K) signaling pathway is essential for Schwann cell myelination. Here we have characterized PI 3-K effectors activated during myelination by probing myelinating cultures and developing nerves with an antibody that recognizes phosphorylated substrates for this pathway. We identified a discrete number of phospho-proteins including the S6 ribosomal protein (S6rp), which is down-regulated at the onset of myelination, and N-myc downstream-regulated gene-1 (NDRG1), which is up-regulated strikingly with myelination. We show that type III Neuregulin1 on the axon is the primary activator of S6rp, an effector of mTORC1. In contrast, laminin-2 in the extracellular matrix (ECM), signaling through the α6β4 integrin and Sgk1 (serum and glucocorticoid-induced kinase 1), drives phosphorylation of NDRG1 in the Cajal bands of the abaxonal compartment. Unexpectedly, mice deficient in α6β4 integrin signaling or Sgk1 exhibit hypermyelination during development. These results identify functionally and spatially distinct PI 3-K pathways: an early, pro-myelinating pathway driven by axonal Neuregulin1 and a later-acting, laminin-integrin-dependent pathway that negatively regulates myelination. | 24687281
|
The 4.1B cytoskeletal protein regulates the domain organization and sheath thickness of myelinated axons. Einheber, S; Meng, X; Rubin, M; Lam, I; Mohandas, N; An, X; Shrager, P; Kissil, J; Maurel, P; Salzer, JL Glia
61
240-53
2013
Afficher le résumé
Myelinated axons are organized into specialized domains critical to their function in saltatory conduction, i.e., nodes, paranodes, juxtaparanodes, and internodes. Here, we describe the distribution and role of the 4.1B protein in this organization. 4.1B is expressed by neurons, and at lower levels by Schwann cells, which also robustly express 4.1G. Immunofluorescence and immuno-EM demonstrates 4.1B is expressed subjacent to the axon membrane in all domains except the nodes. Mice deficient in 4.1B have preserved paranodes, based on marker staining and EM in contrast to the juxtaparanodes, which are substantially affected in both the PNS and CNS. The juxtaparanodal defect is evident in developing and adult nerves and is neuron-autonomous based on myelinating cocultures in which wt Schwann cells were grown with 4.1B-deficient neurons. Despite the juxtaparanodal defect, nerve conduction velocity is unaffected. Preservation of paranodal markers in 4.1B deficient mice is associated with, but not dependent on an increase of 4.1R at the axonal paranodes. Loss of 4.1B in the axon is also associated with reduced levels of the internodal proteins, Necl-1 and Necl-2, and of alpha-2 spectrin. Mutant nerves are modestly hypermyelinated and have increased numbers of Schmidt-Lanterman incisures, increased expression of 4.1G, and express a residual, truncated isoform of 4.1B. These results demonstrate that 4.1B is a key cytoskeletal scaffold for axonal adhesion molecules expressed in the juxtaparanodal and internodal domains that unexpectedly regulates myelin sheath thickness. | 23109359
|