Integrin α3β1 regulates kidney collecting duct development via TRAF6-dependent K63-linked polyubiquitination of Akt. Yazlovitskaya, EM; Tseng, HY; Viquez, O; Tu, T; Mernaugh, G; McKee, KK; Riggins, K; Quaranta, V; Pathak, A; Carter, BD; Yurchenco, P; Sonnenberg, A; Böttcher, RT; Pozzi, A; Zent, R Molecular biology of the cell
26
1857-74
2015
Show Abstract
The collecting system of the kidney develops from the ureteric bud (UB), which undergoes branching morphogenesis, a process regulated by multiple factors, including integrin-extracellular matrix interactions. The laminin (LM)-binding integrin α3β1 is crucial for this developmental program; however, the LM types and LM/integrin α3β1-dependent signaling pathways are poorly defined. We show that α3 chain-containing LMs promote normal UB branching morphogenesis and that LM-332 is a better substrate than LM-511 for stimulating integrin α3β1-dependent collecting duct cell functions. We demonstrate that integrin α3β1-mediated cell adhesion to LM-332 modulates Akt activation in the developing collecting system and that Akt activation is PI3K independent but requires decreased PTEN activity and K63-linked polyubiquitination. We identified the ubiquitin-modifying enzyme TRAF6 as an interactor with the integrin β1 subunit and regulator of integrin α3β1-dependent Akt activation. Finally, we established that the developmental defects of TRAF6- and integrin α3-null mouse kidneys are similar. Thus K63-linked polyubiquitination plays a previously unrecognized role in integrin α3β1-dependent cell signaling required for UB development and may represent a novel mechanism whereby integrins regulate signaling pathways. | | | 25808491
|
AIP1-mediated actin disassembly is required for postnatal germ cell migration and spermatogonial stem cell niche establishment. Xu, J; Wan, P; Wang, M; Zhang, J; Gao, X; Hu, B; Han, J; Chen, L; Sun, K; Wu, J; Wu, X; Huang, X; Chen, J Cell death & disease
6
e1818
2015
Show Abstract
In mammals, spermatogonial stem cells (SSCs) arise from early germ cells called gonocytes, which are derived from primordial germ cells during embryogenesis and remain quiescent until birth. After birth, these germ cells migrate from the center of testicular cord, through Sertoli cells, and toward the basement membrane to form the SSC pool and establish the SSC niche architecture. However, molecular mechanisms underlying germ cell migration and niche establishment are largely unknown. Here, we show that the actin disassembly factor actin interacting protein 1 (AIP1) is required in both germ cells and Sertoli cells to regulate this process. Germ cell-specific or Sertoli cell-specific deletion of Aip1 gene each led to significant defects in germ cell migration after postnatal day 4 or 5, accompanied by elevated levels of actin filaments (F-actin) in the affected cells. Furthermore, our data demonstrated that interaction between germ cells and Sertoli cells, likely through E-cadherin-mediated cell adhesion, is critical for germ cells' migration toward the basement membrane. At last, Aip1 deletion in Sertoli cells decreased SSC self-renewal, increased spermatogonial differentiation, but did not affect the expression and secretion levels of growth factors, suggesting that the disruption of SSC function results from architectural changes in the postnatal niche. | | | 26181199
|
Filamin B regulates chondrocyte proliferation and differentiation through Cdk1 signaling. Hu, J; Lu, J; Lian, G; Zhang, J; Hecht, JL; Sheen, VL PloS one
9
e89352
2014
Show Abstract
Humans who harbor loss of function mutations in the actin-associated filamin B (FLNB) gene develop spondylocarpotarsal syndrome (SCT), a disorder characterized by dwarfism (delayed bone formation) and premature fusion of the vertebral, carpal and tarsal bones (premature differentiation). To better understand the cellular and molecular mechanisms governing these seemingly divergent processes, we generated and characterized FlnB knockdown ATDC5 cell lines. We found that FlnB knockdown led to reduced proliferation and enhanced differentiation in chondrocytes. Within the shortened growth plate of postnatal FlnB(-/-) mice long bone, we observed a similarly progressive decline in the number of rapidly proliferating chondrocytes and premature differentiation characterized by an enlarged prehypertrophic zone, a widened Col2a1(+)/Col10a1(+) overlapping region, but relatively reduced hypertrophic zone length. The reduced chondrocyte proliferation and premature differentiation were, in part, attributable to enhanced G2/M phase progression, where fewer FlnB deficient ATDC5 chondrocytes resided in the G2/M phase of the cell cycle. FlnB loss reduced Cdk1 phosphorylation (an inhibitor of G2/M phase progression) and Cdk1 inhibition in chondrocytes mimicked the null FlnB, premature differentiation phenotype, through a β1-integrin receptor- Pi3k/Akt (a key regulator of chondrocyte differentiation) mediated pathway. In this context, the early prehypertrophic differentiation provides an explanation for the premature differentiation seen in this disorder, whereas the progressive decline in proliferating chondrocytes would ultimately lead to reduced chondrocyte production and shortened bone length. These findings begin to define a role for filamin proteins in directing both cell proliferation and differentiation through indirect regulation of cell cycle associated proteins. | | | 24551245
|
Sorting nexin 31 binds multiple β integrin cytoplasmic domains and regulates β1 integrin surface levels and stability. Tseng, HY; Thorausch, N; Ziegler, T; Meves, A; Fässler, R; Böttcher, RT Journal of molecular biology
426
3180-94
2014
Show Abstract
Trafficking of α5β1 integrin to lysosomes and its subsequent degradation is influenced by ligand occupancy and the binding of SNX17 via its protein 4.1, ezrin, radixin, moesin (FERM) domain to the membrane-distal NPxY motif in the cytoplasmic domain of β1 integrin in early endosomes. Two other sorting nexin (SNX) family members, namely SNX27 and SNX31, share with SNX17 next to their obligate phox domain a FERM domain, which may enable them to bind β integrin tails. Here we report that, in addition to SNX17, SNX31 but not SNX27 binds several β integrin tails in early endosomes in a PI3 (phosphatidylinositide 3)-kinase-dependent manner. Similarly like SNX17, binding of SNX31 with β1 integrin tails in early endosomes occurs between the FERM domain and the membrane-distal NPxY motif in the β1 integrin cytoplasmic domain. Furthermore, expression of SNX31 rescues β1 integrin surface levels and stability in SNX17-depleted cells. In contrast to SNX17, expression of SNX31 is restricted and found highly expressed in bladder and melanoma tissue. Altogether, these results demonstrate that SNX31 is an endosomal regulator of β integrins with a restricted expression pattern. | | | 25020227
|
Epithelial β1 integrin is required for lung branching morphogenesis and alveolarization. Plosa, EJ; Young, LR; Gulleman, PM; Polosukhin, VV; Zaynagetdinov, R; Benjamin, JT; Im, AM; van der Meer, R; Gleaves, LA; Bulus, N; Han, W; Prince, LS; Blackwell, TS; Zent, R Development (Cambridge, England)
141
4751-62
2014
Show Abstract
Integrin-dependent interactions between cells and extracellular matrix regulate lung development; however, specific roles for β1-containing integrins in individual cell types, including epithelial cells, remain incompletely understood. In this study, the functional importance of β1 integrin in lung epithelium during mouse lung development was investigated by deleting the integrin from E10.5 onwards using surfactant protein C promoter-driven Cre. These mutant mice appeared normal at birth but failed to gain weight appropriately and died by 4 months of age with severe hypoxemia. Defects in airway branching morphogenesis in association with impaired epithelial cell adhesion and migration, as well as alveolarization defects and persistent macrophage-mediated inflammation were identified. Using an inducible system to delete β1 integrin after completion of airway branching, we showed that alveolarization defects, characterized by disrupted secondary septation, abnormal alveolar epithelial cell differentiation, excessive collagen I and elastin deposition, and hypercellularity of the mesenchyme occurred independently of airway branching defects. By depleting macrophages using liposomal clodronate, we found that alveolarization defects were secondary to persistent alveolar inflammation. β1 integrin-deficient alveolar epithelial cells produced excessive monocyte chemoattractant protein 1 and reactive oxygen species, suggesting a direct role for β1 integrin in regulating alveolar homeostasis. Taken together, these studies define distinct functions of epithelial β1 integrin during both early and late lung development that affect airway branching morphogenesis, epithelial cell differentiation, alveolar septation and regulation of alveolar homeostasis. | | | 25395457
|
Fibroblast α11β1 integrin regulates tensional homeostasis in fibroblast/A549 carcinoma heterospheroids. Lu, N; Karlsen, TV; Reed, RK; Kusche-Gullberg, M; Gullberg, D PloS one
9
e103173
2014
Show Abstract
We have previously shown that fibroblast expression of α11β1 integrin stimulates A549 carcinoma cell growth in a xenograft tumor model. To understand the molecular mechanisms whereby a collagen receptor on fibroblast can regulate tumor growth we have used a 3D heterospheroid system composed of A549 tumor cells and fibroblasts without (α11+/+) or with a deletion (α11-/-) in integrin α11 gene. Our data show that α11-/-/A549 spheroids are larger than α11+/+/A549 spheroids, and that A549 cell number, cell migration and cell invasion in a collagen I gel are decreased in α11-/-/A549 spheroids. Gene expression profiling of differentially expressed genes in fibroblast/A549 spheroids identified CXCL5 as one molecule down-regulated in A549 cells in the absence of α11 on the fibroblasts. Blocking CXCL5 function with the CXCR2 inhibitor SB225002 reduced cell proliferation and cell migration of A549 cells within spheroids, demonstrating that the fibroblast integrin α11β1 in a 3D heterospheroid context affects carcinoma cell growth and invasion by stimulating autocrine secretion of CXCL5. We furthermore suggest that fibroblast α11β1 in fibroblast/A549 spheroids regulates interstitial fluid pressure by compacting the collagen matrix, in turn implying a role for stromal collagen receptors in regulating tensional hemostasis in tumors. In summary, blocking stromal α11β1 integrin function might thus be a stroma-targeted therapeutic strategy to increase the efficacy of chemotherapy. | | | 25076207
|
FGF ligands of the postnatal mammary stroma regulate distinct aspects of epithelial morphogenesis. Zhang, X; Martinez, D; Koledova, Z; Qiao, G; Streuli, CH; Lu, P Development (Cambridge, England)
141
3352-62
2014
Show Abstract
FGF signaling is essential for mammary gland development, yet the mechanisms by which different members of the FGF family control stem cell function and epithelial morphogenesis in this tissue are not well understood. Here, we have examined the requirement of Fgfr2 in mouse mammary gland morphogenesis using a postnatal organ regeneration model. We found that tissue regeneration from basal stem cells is a multistep event, including luminal differentiation and subsequent epithelial branching morphogenesis. Basal cells lacking Fgfr2 did not generate an epithelial network owing to a failure in luminal differentiation. Moreover, Fgfr2 null epithelium was unable to undergo ductal branch initiation and elongation due to a deficiency in directional migration. We identified FGF10 and FGF2 as stromal ligands that control distinct aspects of mammary ductal branching. FGF10 regulates branch initiation, which depends on directional epithelial migration. By contrast, FGF2 controls ductal elongation, requiring cell proliferation and epithelial expansion. Together, our data highlight a pleiotropic role of Fgfr2 in stem cell differentiation and branch initiation, and reveal that different FGF ligands regulate distinct aspects of epithelial behavior. | | | 25078648
|
SEL1L regulates adhesion, proliferation and secretion of insulin by affecting integrin signaling. Diaferia, GR; Cirulli, V; Biunno, I PloS one
8
e79458
2013
Show Abstract
SEL1L, a component of the endoplasmic reticulum associated degradation (ERAD) pathway, has been reported to regulate the (i) differentiation of the pancreatic endocrine and exocrine tissue during the second transition of mouse embryonic development, (ii) neural stem cell self-renewal and lineage commitment and (iii) cell cycle progression through regulation of genes related to cell-matrix interaction. Here we show that in the pancreas the expression of SEL1L is developmentally regulated, such that it is readily detected in developing islet cells and in nascent acinar clusters adjacent to basement membranes, and becomes progressively restricted to the islets of Langherans in post-natal life. This peculiar expression pattern and the presence of two inverse RGD motifs in the fibronectin type II domain of SEL1L protein indicate a possible interaction with cell adhesion molecules to regulate islets architecture. Co-immunoprecipitation studies revealed SEL1L and ß1-integrin interaction and, down-modulation of SEL1L in pancreatic ß-cells, negatively influences both cell adhesion on selected matrix components and cell proliferation likely due to altered ERK signaling. Furthermore, the absence of SEL1L protein strongly inhibits glucose-stimulated insulin secretion in isolated mouse pancreatic islets unveiling an important role of SEL1L in insulin trafficking. This phenotype can be rescued by the ectopic expression of the ß1-integrin subunit confirming the close interaction of these two proteins in regulating the cross-talk between extracellular matrix and insulin signalling to create a favourable micro-environment for ß-cell development and function. | | | 24324549
|
CD98hc (SLC3A2) regulation of skin homeostasis wanes with age. Boulter, E; Estrach, S; Errante, A; Pons, C; Cailleteau, L; Tissot, F; Meneguzzi, G; Féral, CC The Journal of experimental medicine
210
173-90
2013
Show Abstract
Skin aging is linked to reduced epidermal proliferation and general extracellular matrix atrophy. This involves factors such as the cell adhesion receptors integrins and amino acid transporters. CD98hc (SLC3A2), a heterodimeric amino acid transporter, modulates integrin signaling in vitro. We unravel CD98hc functions in vivo in skin. We report that CD98hc invalidation has no appreciable effect on cell adhesion, clearly showing that CD98hc disruption phenocopies neither CD98hc knockdown in cultured keratinocytes nor epidermal β1 integrin loss in vivo. Instead, we show that CD98hc deletion in murine epidermis results in improper skin homeostasis and epidermal wound healing. These defects resemble aged skin alterations and correlate with reduction of CD98hc expression observed in elderly mice. We also demonstrate that CD98hc absence in vivo induces defects as early as integrin-dependent Src activation. We decipher the molecular mechanisms involved in vivo by revealing a crucial role of the CD98hc/integrins/Rho guanine nucleotide exchange factor (GEF) leukemia-associated RhoGEF (LARG)/RhoA pathway in skin homeostasis. Finally, we demonstrate that the deregulation of RhoA activation in the absence of CD98hc is also a result of impaired CD98hc-dependent amino acid transports. | | | 23296466
|
β1 integrins with individually disrupted cytoplasmic NPxY motifs are embryonic lethal but partially active in the epidermis. Meves, A; Stremmel, C; Böttcher, RT; Fässler, R The Journal of investigative dermatology
133
2722-31
2013
Show Abstract
β1 Integrin adhesion is believed to require binding of talins and kindlins to the membrane proximal and distal NPxY motifs of the β1 cytoplasmic tail, respectively. To test this hypothesis, we substituted the membrane proximal and distal tyrosines (Y) of the β1 tail with alanine (A) residues (β1 Y783A; β1 Y795A) in the germline of mice. We report that β1 Y783A or β1 Y795A substitutions blocked talin or kindlin binding, respectively, and led to β1 null-like peri-implantation lethality. Expression of β1 Y783A or β1 Y795A in the epidermis, however, resulted in skin blister and hair follicle phenotypes that were considerably milder than those observed with β1 integrin gene deletion or a β1 double Y-to-A substitution (β1 YY783/795AA). In culture, defects in adhesion, spreading, and migration were more severe with the β1 Y783A than with the β1 Y795A substitution despite markedly reduced β1 Y795A integrin surface levels owing to diminished protein stability. We conclude that regulation of β1 integrin adhesion through talins and kindlins may differ substantially between stably adherent keratinocytes and cells of the developing embryo, and that β1 cytoplasmic NPxY motifs contribute individually and independent of each other to β1 function in keratinocytes. | | | 23702582
|