Millipore Sigma Vibrant Logo
 

+www.w-t.cn


1105 Results Búsqueda avanzada  
Mostrar
Productos (0)
Documentos (1,105)
Páginas (0)

Acote sus resultados Utilice los filtros siguientes para refinar su búsqueda

Tipo de documento

  • (627)
  • (464)
  • (13)
  • (1)
¿No encuentra lo que está buscando?
Póngase en contacto con
el Servicio de Atención
al Cliente

 
¿Necesita ayuda para encontrar un documento?
  • Distinct SOX9 levels differentially mark stem/progenitor populations and enteroendocrine cells of the small intestine epithelium. 19228882

    SOX transcription factors have the capacity to modulate stem/progenitor cell proliferation and differentiation in a dose-dependent manner. SOX9 is expressed in the small intestine epithelial stem cell zone. Therefore, we hypothesized that differential levels of SOX9 may exist, influencing proliferation and/or differentiation of the small intestine epithelium. Sox9 expression levels in the small intestine were investigated using a Sox9 enhanced green fluorescent protein (Sox9(EGFP)) transgenic mouse. Sox9(EGFP) levels correlate with endogenous SOX9 levels, which are expressed at two steady-state levels, termed Sox9(EGFPLO) and Sox9(EGFPHI). Crypt-based columnar cells are Sox9(EGFPLO) and demonstrate enriched expression of the stem cell marker, Lgr5. Sox9(EGFPHI) cells express chromogranin A and substance P but do not express Ki67 and neurogenin3, indicating that Sox9(EGFPHI) cells are postmitotic enteroendocrine cells. Overexpression of SOX9 in a crypt cell line stopped proliferation and induced morphological changes. These data support a bimodal role for SOX9 in the intestinal epithelium, where low SOX9 expression supports proliferative capacity, and high SOX9 expression suppresses proliferation.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Prolonged glial expression of Sox4 in the CNS leads to architectural cerebellar defects and ataxia. 17507571

    Sox proteins of group C are strongly expressed in the developing nervous system and have been associated with maturation of neurons and glia. Here, we overexpressed the group C protein Sox4 in transgenic mice under the control of the human GFAP promoter. Transgene expression was detected in radial glia and astrocytes throughout the CNS. The transgenic mice were ataxic and exhibited hydrocephaly as well as cerebellar malformations. In the cerebellum, fissures were not formed and neuronal layering was dramatically disturbed. Nevertheless, all neuronal cell types of the cerebellum were present as well as cells with characteristics of early radial glia, astrocytes, and oligodendrocytes. However, radial glia failed to migrate into the position normally taken by Bergmann glia and did not extend radial fibers toward the pial surface. The cerebellar malformations can therefore be explained by the absence of functional Bergmann glia. We conclude that Sox4 expression counteracts differentiation of radial glia and has to be downregulated before full maturation can occur.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Sox4 enhances chondrogenic differentiation and proliferation of human synovium-derived stem cell via activation of long noncoding RNA DANCR. 26514989

    Mesenchymal stem cells (MSCs) have several features that make them an attractive option for potentiating cartilage repair. Synovium-derived (SMSCs) have been recently recognized as an excellent source. SRY-related HMG-box (Sox) family plays an important role in the proliferation and differentiation of SMSCs. However, the role of Sox4 in human SMSCs remains elusive. In the present study, we investigated the role of Sox4 in SMSCs through gain-of-function studies and found that Sox4 promoted cell proliferation and chondrogenesis. Furthermore, Sox4 could directly bind to the promoter of long noncoding RNA DANCR and increased its expression. Finally, knockdown of DANCR could reverse the stimulative effect of Sox4 on the proliferation and chondrogenesis of SMSCs. Taken together, our data highlights the pivotal role of Sox4 in the proliferation and differentiation of SMSCs.
    Tipo de documento:
    Referencia
    Referencia del producto:
    17-371
    Nombre del producto:
    EZ-ChIP™
  • Ring1B and Suv39h1 delineate distinct chromatin states at bivalent genes during early mouse lineage commitment. 20573702

    Pluripotent cells develop within the inner cell mass of blastocysts, a mosaic of cells surrounded by an extra-embryonic layer, the trophectoderm. We show that a set of somatic lineage regulators (including Hox, Gata and Sox factors) that carry bivalent chromatin enriched in H3K27me3 and H3K4me2 are selectively targeted by Suv39h1-mediated H3K9me3 and de novo DNA methylation in extra-embryonic versus embryonic (pluripotent) lineages, as assessed both in blastocyst-derived stem cells and in vivo. This stably repressed state is linked with a loss of gene priming for transcription through the exclusion of PRC1 (Ring1B) and RNA polymerase II complexes at bivalent, lineage-inappropriate genes upon trophoblast lineage commitment. Collectively, our results suggest a mutually exclusive role for Ring1B and Suv39h1 in regulating distinct chromatin states at key developmental genes and propose a novel mechanism by which lineage specification can be reinforced during early development.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • S100A1 and S100B, transcriptional targets of SOX trio, inhibit terminal differentiation of chondrocytes. 17396138

    Transcription factor SOX9 (sex-determining region Y-type high mobility group box 9) and its coactivators SOX5 and SOX6 (the SOX trio) induce early-stage chondrocyte differentiation and suppress its terminal stage. To identify possible targets of the SOX trio, we carried out a microarray analysis and identified S100A1 and S100B as possible target molecules. S100 protein expression was localized in late proliferative and pre-hypertrophic chondrocytes of the mouse growth plate. Overexpression of S100A1, S100B or their combination in cultured chondrogenic cells did not induce early differentiation, but suppressed hypertrophic differentiation and mineralization. Silencing of both S100A1 and S100B stimulated terminal differentiation and reversed the SOX-trio-mediated inhibition. Finally, luciferase reporter, electrophoretic mobility shift and chromatin immunoprecipitation analyses showed that transcription of both S100 proteins is induced by the SOX trio, and also identified their respective enhancer elements in the 5'-end flanking region. We conclude that S100A1 and S100B are transcriptional targets of the SOX trio and mediate its inhibition of terminal differentiation of chondrocytes.
    Tipo de documento:
    Referencia
    Referencia del producto:
    17-371
    Nombre del producto:
    EZ-ChIP™
  • Transplantation of human mesenchymal stems cells into intervertebral discs in a xenogeneic porcine model. 19112334

    STUDY DESIGN: Experimental and descriptive study of a xenotransplantation model in minipigs. OBJECTIVE: To study survival and function of human mesenchymal stem cells (hMSCs) after transplantation into injured porcine spinal discs, as a model for cell therapy. SUMMARY OF BACKGROUND DATA: Biologic treatment options of the intervertebral disc are suggested for patients with chronic low back pain caused by disc degeneration. METHODS: Three lumbar discs in each of 9 minipigs were injured by aspiration of the nucleus pulposus (NP), 2 weeks later hMSCs were injected in F12 media suspension (cell/med) or with a hydrogel carrier (Puramatrix) (cell/gel). The animals were sacrificed after 1, 3, or 6 months. Disc appearance was visualized by magnetic resonance imaging. Immunohistochemistry methods were used to detect hMSCs by antihuman nuclear antibody staining, and further performed for Collagen II, Aggrecan, and Collagen I. SOX 9, Aggrecan, Versican, Collagen IA, and Collagen IIA and Collagen IIB human mRNA expression was analyzed by real-time PCR. RESULTS: At magnetic resonance imaging all injured discs demonstrated degenerative signs. Cell/gel discs showed fewer changes compared with cell/med discs and only injured discs at later time points. hMSCs were detected in 9 of 10 of the cell/gel discs and in 8 of 9 of the cell/med discs. Immunostaining for Aggrecan and Collagen type II expression were observed in NP after 3 and 6 months in gel/cell discs and colocalized with the antihuman nuclear antibody. mRNA expression of Collagen IIA, Collagen IIB, Versican, Collagen 1A, Aggrecan, and SOX9 were detected in both cell/med and cell/gel discs at the time points 3 and 6 months by real-time PCR. CONCLUSION: hMSCs survive in the porcine disc for at least 6 months and express typical chondrocyte markers suggesting differentiation toward disc-like cells. As in autologous animal models the combination with a three-dimensional-hydrogel carrier seems to facilitate differentiation and survival of MSCs in the disc. Xenotransplantation seems to be valuable in evaluating the possibility for human cell therapy treatment for intervertebral discs.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB1281
    Nombre del producto:
    Anti-Nuclei Antibody, clone 235-1
  • Characterization of the neural stem cell gene regulatory network identifies OLIG2 as a multifunctional regulator of self-renewal. 25294244

    The gene regulatory network (GRN) that supports neural stem cell (NS cell) self-renewal has so far been poorly characterized. Knowledge of the central transcription factors (TFs), the noncoding gene regulatory regions that they bind to, and the genes whose expression they modulate will be crucial in unlocking the full therapeutic potential of these cells. Here, we use DNase-seq in combination with analysis of histone modifications to identify multiple classes of epigenetically and functionally distinct cis-regulatory elements (CREs). Through motif analysis and ChIP-seq, we identify several of the crucial TF regulators of NS cells. At the core of the network are TFs of the basic helix-loop-helix (bHLH), nuclear factor I (NFI), SOX, and FOX families, with CREs often densely bound by several of these different TFs. We use machine learning to highlight several crucial regulatory features of the network that underpin NS cell self-renewal and multipotency. We validate our predictions by functional analysis of the bHLH TF OLIG2. This TF makes an important contribution to NS cell self-renewal by concurrently activating pro-proliferation genes and preventing the untimely activation of genes promoting neuronal differentiation and stem cell quiescence.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells in self-gelling alginate discs reveals novel chondrogenic signature gene clusters. 21087199

    We have used a disc-shaped self-gelling alginate hydrogel as a scaffold for in vitro chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells. The comparison of monolayer cells and alginate embedded cells with or without differentiation medium allowed us to perform a detailed kinetic study of the expression of a range of genes and proteins known to be involved in chondrogenesis, using real-time polymerase chain reaction, fluorescence immunohistochemistry, and glycosaminoglycan measurement in the supernatant. mRNA encoding type II collagen (COL2), COL10, aggrecan, and SOX5, 6, and 9 were greatly elevated already at day 7, whereas COL1 and versican mRNA were gradually reduced. COL2 and aggrecan were dispersed throughout the extracellular matrix at day 21, whereas COL10 distribution was mainly intra/pericellular. COL1 seemed to be produced by only some of the cells. SOX proteins were predominantly localized in the nuclei. Then, using microarray analysis, we identified a signature cluster of extracellular matrix and transcription factor genes upregulated during chondrogenesis similar to COL2A1, and clusters of genes involved in immune responses, blood vessel development, and cell adhesion downregulated similar to the chemokine CXCL12. Analysis of the signature chondrogenic clusters, including novel potential marker genes identified here, may provide a better understanding of how the stem cell fate could be directed to produce perfect hyaline cartilage implants.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AB5535
    Nombre del producto:
    Anti-Sox9 Antibody
  • Differentiation and regenerative capacities of human odontoma-derived mesenchymal cells. 19281762

    Regenerating human tooth ex vivo and biological repair of dental caries are hampered by non-viable odontogenic stem cells that can regenerate different tooth components. Odontoma is a developmental dental anomaly that may contain putative post-natal stem cells with the ability to differentiate and regenerate in vivo new dental structures that may include enamel, dentin, cementum and pulp tissues. We evaluated odontoma tissues from 14 patients and further isolated and characterized human odontoma-derived mesenchymal cells (HODCs) with neural stem cell and hard tissue regenerative properties from a group of complex odontoma tissues from 1 of 14 patients. Complex odontoma was more common (9 of 14) than compound type and females (9 of 14) were more affected than males in our set of patients. HODCs were highly proliferative like dental pulp stem cells (DPSCs) but demonstrated stronger neural immunophenotype than both DPSCs and mandible bone marrow stromal cells (BMSCs) by expressing higher levels of nestin, Sox 2 and betaIII-tubulin. When transplanted with hydroxyapatite/tricalcium phosphate into immunocompromised mice, HODCs differentiated and regenerated calcified hard tissues in vivo that were morphologically and quantitatively comparable to those generated by DPSCs and BMSCs. When transplanted with polycaprolactone (biodegradable carrier), HODCs differentiated to form new predentin on the surface of a dentin platform. Newly formed predentin contained numerous distinct dentinal tubules and an apparent dentin-pulp arrangement. HODCs represent unique odontogenic progenitors that readily commit to formation of dental hard tissues.
    Tipo de documento:
    Referencia
    Referencia del producto:
    SCR060
    Nombre del producto:
    Human Neural Stem Cell Characterization Kit
  • SOX9 and SOX10 but not BRN2 are required for nestin expression in human melanoma cells. 18923447

    Nestin is an intermediate filament protein and a marker of neuroectodermal stem cells indicating multipotentiality and regenerative capability. In melanoma tissues, nestin re-expression was correlated with tumor progression. Activation of the nestin neural enhancer was shown to be dependent on the binding of class III POU transcription factors, with brain-2 (BRN2) suggested to play a key role. We found both nestin and BRN2 mRNA in almost all of 13 analyzed melanoma cell lines of different progression stages, but expression levels did not correlate. Nestin protein was detected in 11 of 13 and BRN2 protein in 7 of 13 melanoma cell lines independent of progression stage. Downregulation of BRN2 by small-interfering RNA did not alter nestin expression in melanoma cells. However, POU proteins, such as BRN2, commonly cooperate with transcription factors of the Sry-box (SOX) family by binding to a nearby DNA site necessary for their action. SOX9 and SOX10 have been shown to be expressed in melanocyte precursors, with SOX10 downregulated upon differentiation. We now demonstrate SOX9 and SOX10 protein expression in melanoma tissues and cell lines. Downregulation of SOX9 and of SOX10 markedly decreased nestin levels in melanoma cells in a cooperative manner. Thus, SOX9 and SOX10 but not BRN2 seem to be required for nestin expression in human melanoma.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB5326
    Nombre del producto:
    Anti-Nestin Antibody, clone 10C2