Splicing factor SRSF3 is crucial for hepatocyte differentiation and metabolic function. Sen, Supriya, et al. Nat Commun, 4: 1336 (2013)
2013
Show Abstract
SR family RNA binding proteins regulate splicing of nascent RNAs in vitro but their physiological role in vivo is largely unexplored, as genetic deletion of many SR protein genes results in embryonic lethality. Here we show that SRSF3HKO mice carrying a hepatocyte-specific deletion of Srsf3 (homologous to human SRSF3/SRp20) have a disrupted hepatic architecture and show pre- and postnatal growth retardation. SRSF3HKO mice exhibit impaired hepatocyte maturation with alterations in glucose and lipid homeostasis characterized by reduced glycogen storage, fasting hypoglycemia, increased insulin sensitivity and reduced cholesterol synthesis. We identify various splicing alterations in the SRSF3HKO liver that explain the in vivo phenotype. In particular, loss of SRSF3 causes aberrant splicing of Hnf1α, Ern1, Hmgcs1, Dhcr7 and Scap genes, which are critical regulators of glucose and lipid metabolism. Our study provides the first evidence for a SRSF3-driven genetic programme required for morphological and functional differentiation of hepatocytes that may have relevance for human liver disease and metabolic dysregulation. | 23299886
|
Reproductive dysfunction and decreased gnRH neurogenesis in a Mouse Model of cHARGE syndrome. Layman WS, Hurd EA, Martin DM Human molecular genetics
2011
Show Abstract
CHARGE is a multiple congenital anomaly disorder and a common cause of pubertal defects, olfactory dysfunction, growth delays, deaf-blindness, balance disorders and congenital heart malformations. Mutations in CHD7, the gene encoding chromodomain helicase DNA binding protein 7, are present in 60-80% of individuals with the CHARGE syndrome. Mutations in CHD7 have also been reported in the Kallmann syndrome (olfactory dysfunction, delayed puberty and hypogonadotropic hypogonadism). CHD7 is a positive regulator of neural stem cell proliferation and olfactory sensory neuron formation in the olfactory epithelium, suggesting that the loss of CHD7 might also disrupt development of other neural populations. Here we report that female Chd7(Gt/+) mice have delays in vaginal opening and estrus onset, and erratic estrus cycles. Chd7(Gt/+) mice also have decreased circulating levels of luteinizing hormone and follicle-stimulating hormone but apparently normal responsiveness to gonadotropin-releasing hormone (GnRH) agonist and antagonist treatment. GnRH neurons in the adult Chd7(Gt/+) hypothalamus and embryonic nasal region are diminished, and there is decreased cellular proliferation in the embryonic olfactory placode. Expression levels of GnRH1 and Otx2 in the hypothalamus and GnRHR in the pituitary are significantly reduced in adult Chd7(Gt/+) mice. Additionally, Chd7 mutant embryos have CHD7 dosage-dependent reductions in expression levels of Fgfr1, Bmp4 and Otx2 in the olfactory placode. Together, these data suggest that CHD7 has critical roles in the development and maintenance of GnRH neurons for regulating puberty and reproduction. | 21596839
|
The role of C-terminal part of ghrelin in pharmacokinetic profile and biological activity in rats. Naomi Morozumi,Takeshi Hanada,Hiromi Habara,Akira Yamaki,Mayumi Furuya,Takashi Nakatsuka,Norio Inomata,Yoshiharu Minamitake,Kazuhiro Ohsuye,Kenji Kangawa Peptides
32
2011
Show Abstract
Ghrelin is an endogenous ligand for growth hormone secretagogue receptor 1a (GHS-R1a), and consists of 28 amino acid residues with octanoyl modification at Ser(3). The previous studies have revealed that N-terminal part of ghrelin including modified Ser(3) is the active core for the activation of GHS-R1a. On the other hand, the role of C-terminal (8-28) region in ghrelin has not been clarified yet. In the present study, we prepared human ghrelin, C-terminal truncated ghrelin derivatives and anamorelin, a small molecular GHS compound which supposedly mimics the N-terminal active core, and examined GHS-R1a agonist activity in vitro, pharmacokinetic (PK) profile and growth hormone (GH) releasing activity in rats. All compounds demonstrated potent GHS-R1a agonist activities in vitro. Although the lack of C-terminal two amino acids did not modify PK profile and GH releasing activity, the deletion of C-terminal 8 and 20 amino acids affected them, and ghrelin(1-7)-Lys-NH(2) exhibited very short plasma half-life and low GH releasing activity in vivo. In rat plasma, ghrelin(1-7)-Lys-NH(2) was degraded more rapidly than ghrelin, suggesting that C-terminal part of ghrelin protected octanoylation of Ser(3) from plasma esterases. Subdiaphragmatic vagotomy significantly attenuated GH response to ghrelin but not to anamorelin. These results suggest that the C-terminal part of ghrelin has an important role in the biological activity in vivo. We also found that ghrelin stimulated GH release mainly via a vagal nerve pathway but anamorelin augmented GH release possibly by directly acting on brain in rats. | 21291937
|
Diet-induced obesity causes ghrelin resistance in arcuate NPY/AgRP neurons. Briggs DI, Enriori PJ, Lemus MB, Cowley MA, Andrews ZB Endocrinology
151
4745-55. Epub 2010 Sep 8.
2010
Show Abstract
Circulating ghrelin is decreased in obesity, and peripheral ghrelin does not induce food intake in obese mice. We investigated whether ghrelin resistance was a centrally mediated phenomenon involving dysregulated neuropeptide Y (NPY) and agouti-related peptide (AgRP) circuits. We show that diet-induced obesity (DIO) (12 wk) suppresses the neuroendocrine ghrelin system by decreasing acylated and total plasma ghrelin, decreasing ghrelin and Goat mRNA in the stomach, and decreasing expression of hypothalamic GHSR. Peripheral (ip) or central (intracerebroventricular) ghrelin injection was able to induce food intake and arcuate nucleus Fos immunoreactivity in chow-fed but not high-fat diet-fed mice. DIO decreased expression of Npy and Agrp mRNA, and central ghrelin was unable to promote expression of these genes. Ghrelin did not induce AgRP or NPY secretion in hypothalamic explants from DIO mice. Injection of NPY intracerebroventricularly increased food intake in both chow-fed and high-fat diet-fed mice, indicating that downstream NPY/AgRP neural targets are intact and that defective NPY/AgRP function is a primary cause of ghrelin resistance. Ghrelin resistance in DIO is not confined to the NPY/AgRP neurons, because ghrelin did not stimulate growth hormone secretion in DIO mice. Collectively, our data suggests that DIO causes ghrelin resistance by reducing NPY/AgRP responsiveness to plasma ghrelin and suppressing the neuroendocrine ghrelin axis to limit further food intake. Ghrelin has a number of functions in the brain aside from appetite control, including cognitive function, mood regulation, and protecting against neurodegenerative diseases. Thus, central ghrelin resistance may potentiate obesity-related cognitive decline, and restoring ghrelin sensitivity may provide therapeutic outcomes for maintaining healthy aging. | 20826561
|