The gammaherpesviruses Kaposi's sarcoma-associated herpesvirus and murine gammaherpesvirus 68 modulate the Toll-like receptor-induced proinflammatory cytokine response. Bussey, KA; Reimer, E; Todt, H; Denker, B; Gallo, A; Konrad, A; Ottinger, M; Adler, H; Stürzl, M; Brune, W; Brinkmann, MM Journal of virology
88
9245-59
2014
Show Abstract
The human pathogen Kaposi's sarcoma-associated herpesvirus (KSHV), the etiological agent of Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease, establishes lifelong latency upon infection. Murine gammaherpesvirus 68 (MHV68) is a well-established model for KSHV. Toll-like receptors (TLRs) play a crucial role for the innate immune response to pathogens. Although KSHV and MHV68 are detected by TLRs, studies suggest they modulate TLR4 and TLR9 signaling, respectively. In this study, we show that in bone marrow-derived macrophages (BMDMs), MHV68 did not induce a detectable proinflammatory cytokine response. Furthermore, MHV68 abrogated the response to TLR2, -4, -7, and -9 agonists in BMDMs. Similarly to observations with MHV68, infection with KSHV efficiently inhibited TLR2 signaling in THP-1 monocytes. Using a KSHV open reading frame (ORF) library, we found that K4.2, ORF21, ORF31, and the replication and transcription activator protein (RTA)/ORF50 inhibited TLR2-dependent nuclear factor kappa B (NF-κB) activation in HEK293 TLR2-yellow fluorescent protein (YFP)- and Flag-TLR2-transfected HEK293T cells. Of the identified ORFs, RTA/ORF50 strongly downregulated TLR2 and TLR4 signaling by reducing TLR2 and TLR4 protein expression. Confocal microscopy revealed that TLR2 and TLR4 were no longer localized to the plasma membrane in cells expressing RTA/ORF50. In this study, we have shown that the gammaherpesviruses MHV68 and KSHV efficiently downmodulate TLR signaling in macrophages and have identified a novel function of RTA/ORF50 in modulation of the innate immune response.The Toll-like receptors (TLRs) are an important class of pattern recognition receptors of the innate immune system. They induce a potent proinflammatory cytokine response upon detection of a variety of pathogens. In this study, we found that the gammaherpesviruses murine gammaherpesvirus 68 (MHV68) and Kaposi's sarcoma-associated herpesvirus (KSHV) efficiently inhibit the TLR-mediated innate immune response. We further identified the KSHV-encoded replication and transcription activator protein (RTA) as a novel modulator of TLR signaling. Our data suggest that the gammaherpesviruses MHV68 and KSHV prevent activation of the innate immune response by targeting TLR signaling. | | 24899179
|
Naturally occurring mutation affecting the MyD88-binding site of TNFRSF13B impairs triggering of class switch recombination. Almejun, MB; Cols, M; Zelazko, M; Oleastro, M; Cerutti, A; Oppezzo, P; Cunningham-Rundles, C; Danielian, S European journal of immunology
43
805-14
2013
Show Abstract
Mutations in the transmembrane activator and calcium-modulating cyclophilin ligand interactor (TACI) were previously found to be associated with hypogammaglobulinemia in humans. It has been shown that proliferation inducing ligand (APRIL) elicits class switch recombination (CSR) by inducing recruitment of MyD88 to a TACI highly conserved cytoplasmic domain (THC). We have identified a patient with hypogammaglobulinemia carrying a missense mutation (S231R) predicted to affect the THC. Aiming to evaluate the relevance of this novel mutation of TACI in CSR induction, we tested the ability of TACI, TLR9, or/and CD40 ligands to trigger CSR in naive B cells and B-cell lines carrying S231R. IgG secretion was impaired when triggered by TACI or/and TLR9 ligands on S231R-naive B cells. Likewise, these stimuli induced less expression of activation-induced cytidine deaminase, I(γ)1-C(μ), and I(γ)1-C(μ), while induction by optimal CD40 stimulation was indistinguishable from controls. These cells also showed an impaired cooperation between TACI and TLR9 pathways, as well as a lack of APRIL-mediated enhancement of CD40 activation in suboptimal conditions. Finally, after APRIL ligation, S231R-mutated TACI failed to colocalize with MyD88. Collectively, these results highlight the requirement of an intact MyD88-binding site in TACI to trigger CSR. | Western Blotting | 23225259
|
The transmembrane activator TACI triggers immunoglobulin class switching by activating B cells through the adaptor MyD88. He, B; Santamaria, R; Xu, W; Cols, M; Chen, K; Puga, I; Shan, M; Xiong, H; Bussel, JB; Chiu, A; Puel, A; Reichenbach, J; Marodi, L; Döffinger, R; Vasconcelos, J; Issekutz, A; Krause, J; Davies, G; Li, X; Grimbacher, B; Plebani, A; Meffre, E; Picard, C; Cunningham-Rundles, C; Casanova, JL; Cerutti, A Nature immunology
11
836-45
2010
Show Abstract
BAFF and APRIL are innate immune mediators that trigger immunoglobulin G (IgG) and IgA class-switch recombination (CSR) in B cells by engaging the receptor TACI. The mechanism that underlies CSR signaling by TACI remains unknown. Here we found that the cytoplasmic domain of TACI encompasses a conserved motif that bound MyD88, an adaptor that activates transcription factor NF-kappaB signaling pathways via a Toll-interleukin 1 (IL-1) receptor (TIR) domain. TACI lacks a TIR domain, yet triggered CSR via the DNA-editing enzyme AID by activating NF-kappaB through a Toll-like receptor (TLR)-like MyD88-IRAK1-IRAK4-TRAF6-TAK1 pathway. TACI-induced CSR was impaired in mice and humans lacking MyD88 or the kinase IRAK4, which indicates that MyD88 controls a B cell-intrinsic, TIR-independent, TACI-dependent pathway for immunoglobulin diversification. | | 20676093
|
MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Medzhitov, R, et al. Mol. Cell, 2: 253-8 (1998)
1998
Show Abstract
The Toll-mediated signaling cascade using the NF-kappaB pathway has been shown to be essential for immune responses in adult Drosophila, and we recently reported that a human homolog of the Drosophila Toll protein induces various immune response genes via this pathway. We now demonstrate that signaling by the human Toll receptor employs an adaptor protein, MyD88, and induces activation of NF-kappaB via the Pelle-like kinase IRAK and the TRAF6 protein, similar to IL-1R-mediated NF-kappaB activation. However, we find that Toll and IL-1R signaling pathways are not identical with respect to AP-1 activation. Finally, our findings implicate MyD88 as a general adaptor/regulator molecule for the Toll/IL-1R family of receptors for innate immunity. | | 9734363
|
IRAK (Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL-1 signaling. Muzio, M, et al. Science, 278: 1612-5 (1997)
1997
Show Abstract
The interleukin-1 receptor (IL-1R) signaling pathway leads to nuclear factor kappa B (NF-kappaB) activation in mammals and is similar to the Toll pathway in Drosophila: the IL-1R-associated kinase (IRAK) is homologous to Pelle. Two additional proximal mediators were identified that are required for IL-1R-induced NF-kappaB activation: IRAK-2, a Pelle family member, and MyD88, a death domain-containing adapter molecule. Both associate with the IL-1R signaling complex. Dominant negative forms of either attenuate IL-1R-mediated NF-kappaB activation. Therefore, IRAK-2 and MyD88 may provide additional therapeutic targets for inhibiting IL-1-induced inflammation. | | 9374458
|