Millipore Sigma Vibrant Logo
 

autophagy


476 Results Búsqueda avanzada  
Mostrar
Productos (0)
Documentos (404)

Acote sus resultados Utilice los filtros siguientes para refinar su búsqueda

Tipo de documento

  • (396)
  • (6)
  • (1)
  • (1)
¿No encuentra lo que está buscando?
Póngase en contacto con
el Servicio de Atención
al Cliente

 
¿Necesita ayuda para encontrar un documento?
  • LncRNA GAS5 regulates ischemic stroke as a competing endogenous RNA for miR-137 to regulate the Notch1 signaling pathway. 29307821

    Ischemic stroke is related to a variety of physiological and pathological processes including autophagy and apoptosis. Growth arrest-specific 5 (GAS5), a long non-coding RNA (lncRNA), is known to negatively regulate cell survival and plays a key role in the pathogenesis of numerous diseases. However, the function and molecular mechanism of lncRNA GAS5 in ischemic stroke have not been reported. Real-time PCR was used to detect GAS5 and microRNA-137 (miR-137) expression in the brain tissues of mice underwent middle cerebral artery occlusion (MCAO) surgery and oxygen-glucose deprivation (OGD)-treated mouse primary brain neurons. Gain- or loss-of-function approaches were used to manipulate GAS5, miR-137, and Notch1. The mechanism of GAS5 in ischemic stroke was evaluated both in vivo and in vitro via bioinformatics analysis, MTT, flow cytometry, luciferase assay, RNA immunoprecipitation, and Western blot. GAS5 level was up-regulated and negatively correlated with miR-137 expression in MACO-injured brain and in OGR-stimulated primary brain neurons. GAS5 siRNA notably increased the cell viability, suppressed the activation of caspase-3 and cell apoptosis in neurons subjected to OGD. Furthermore, we also found that GAS5 functioned as a competing endogenous RNA (ceRNA) for miR-137 to regulate the de-repression of its endogenous target Notch1 and decrease neuron survival through inactivation of the Notch1 signaling pathway. Taken together, these findings indicate that GAS5 may promote the progression of ischemic stroke through acting as a ceRNA for miR-137 to mediate the Notch1 signaling pathway, which contributes to an extensive understanding of ischemic stroke and may provide novel therapeutic options for this disease.
    Tipo de documento:
    Referencia
    Referencia del producto:
    17-701
    Nombre del producto:
    EZ-Magna RIP™ RNA-Binding Protein Immunoprecipitation Kit
  • Liver autophagy contributes to the maintenance of blood glucose and amino acid levels. 21471734

    Both anabolism and catabolism of the amino acids released by starvation-induced autophagy are essential for cell survival, but their actual metabolic contributions in adult animals are poorly understood. Herein, we report that, in mice, liver autophagy makes a significant contribution to the maintenance of blood glucose by converting amino acids to glucose via gluconeogenesis. Under a synchronous fasting-initiation regimen, autophagy was induced concomitantly with a fall in plasma insulin in the presence of stable glucagon levels, resulting in a robust amino acid release. In liver-specific autophagy (Atg7)-deficient mice, no amino acid release occurred and blood glucose levels continued to decrease in contrast to those of wild-type mice. Administration of serine (30 mg/animal) exerted a comparable effect, raising the blood glucose levels in both control wild-type and mutant mice under starvation. Thus, the absence of the amino acids that were released by autophagic proteolysis is a major reason for a decrease in blood glucose. Autophagic amino acid release in control wild-type livers was significantly suppressed by the prior administration of glucose, which elicited a prompt increase in plasma insulin levels. This indicates that insulin plays a dominant role over glucagon in controlling liver autophagy. These results are the first to show that liver-specific autophagy plays a role in blood glucose regulation.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB1501
    Nombre del producto:
    Anti-Actin Antibody, clone C4
  • The ubiquitin-proteasome system is inhibited by p53 protein expression in human ovarian cancer cells. 20153923

    The ubiquitin-proteasome system (UPS) and autophagy provide major cellular pathways for protein degradation. Since the p53 pathway controls autophagy, we investigated whether p53 regulates UPS in ovarian tumour cell lines. A reporter cell line (SKOV3-EGFPu) was established to measure UPS function against a constant genetic background. Transient expression of either wild type or mutant p53 in SKOV3-EGFPu cells reduced UPS activity as compared to vector control. These results, together with those from endogenous p53 expression in seven ovarian cancer cell lines, suggest that expression of both wild-type and mutant p53 protein impairs UPS function. Thus, p53 expression may regulate protein homeostasis by down-regulating UPS function in response to cellular stress.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB1501R
    Nombre del producto:
    Anti-Actin Antibody,clone C4
  • Autophagy regulates endoplasmic reticulum stress in ischemic preconditioning. 22361585

    Recent studies have suggested that autophagy plays a prosurvival role in ischemic preconditioning (IPC). This study was taken to assess the linkage between autophagy and endoplasmic reticulum (ER) stress during the process of IPC. The effects of IPC on ER stress and neuronal injury were determined by exposure of primary cultured murine cortical neurons to 30 min of OGD 24 h prior to a subsequent lethal OGD. The effects of IPC on ER stress and ischemic brain damage were evaluated in rats by a brief ischemic insult followed by permanent focal ischemia (PFI) 24 h later using the suture occlusion technique. The results showed that both IPC and lethal OGD increased the LC3-II expression and decreased p62 protein levels, but the extent of autophagy activation was varied. IPC treatment ameliorated OGD-induced cell damage in cultured cortical neurons, whereas 3-MA (5-20 mM) and bafilomycin A 1 (75-150 nM) suppressed the neuroprotection induced by IPC. 3-MA, at the dose blocking autophagy, significantly inhibited IPC-induced HSP70, HSP60 and GRP78 upregulation; meanwhile, it also aggregated the ER stress and increased activated caspase-12, caspase-3 and CHOP protein levels both in vitro and in vivo models. The ER stress inhibitor Sal (75 pmol) recovered IPC-induced neuroprotection in the presence of 3-MA. Rapamycin 50-200 nM in vitro and 35 pmol in vivo 24 h before the onset of lethal ischemia reduced ER stress and ischemia-induced neuronal damage. These results demonstrated that pre-activation of autophagy by ischemic preconditioning can boost endogenous defense mechanisms to upregulate molecular chaperones, and hence reduce excessive ER stress during fatal ischemia.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AB3613
    Nombre del producto:
    Anti-Caspase 12 Antibody, NT
  • Dengue virus infection induces autophagy: an in vivo study. 24011333

    We and others have reported that autophagy is induced by dengue viruses (DVs) in various cell lines, and that it plays a supportive role in DV replication. This study intended to clarify whether DV infection could induce autophagy in vivo. Furthermore, the effect of DV induced autophagy on viral replication and DV-related pathogenesis was investigated.The physiopathological parameters were evaluated after DV2 was intracranially injected into 6-day-old ICR suckling mice. Autophagy-related markers were monitored by immunohistochemical/immunofluorescent staining and Western blotting. Double-membrane autophagic vesicles were investigated by transmission-electron-microscopy. DV non-structural-protein-1 (NS1) expression (indicating DV infection) was detected in the cerebrum, medulla and midbrain of the infected mice. In these infected tissues, increased LC3 puncta formation, LC3-II expression, double-membrane autophagosome-like vesicles (autophagosome), amphisome, and decreased p62 accumulation were observed, indicating that DV2 induces the autophagic progression in vivo. Amphisome formation was demonstrated by colocalization of DV2-NS1 protein or LC3 puncta and mannose-6-phosphate receptor (MPR, endosome marker) in DV2-infected brain tissues. We further manipulated DV-induced autophagy by the inducer rapamycin and the inhibitor 3-methyladenine (3MA), which accordingly promoted or suppressed the disease symptoms and virus load in the brain of the infected mice.We demonstrated that DV2 infection of the suckling mice induces autophagy, which plays a promoting role in DV replication and pathogenesis.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • bis-Dehydroxy-Curcumin triggers mitochondrial-associated cell death in human colon cancer cells through ER-stress induced autophagy. 23326480

    The activation of autophagy has been extensively described as a pro-survival strategy, which helps to keep cells alive following deprivation of nutrients/growth factors and other stressful cellular conditions. In addition to cytoprotective effects, autophagy can accompany cell death. Autophagic vacuoles can be observed before or during cell death, but the role of autophagy in the death process is still controversial. A complex interplay between autophagy and apoptosis has come to light, taking into account that numerous genes, such as p53 and Bcl-2 family members, are shared between these two pathways.In this study we showed a potent and irreversible cytotoxic activity of the stable Curcumin derivative bis-DeHydroxyCurcumin (bDHC) on human colon cancer cells, but not on human normal cells. Autophagy is elicited by bDHC before cell death as demonstrated by increased autophagosome formation -measured by electron microscopy, fluorescent LC3 puncta and LC3 lipidation- and autophagic flux -measured by interfering LC3-II turnover. The accumulation of poly-ubiquitinated proteins and ER-stress occurred upstream of autophagy induction and resulted in cell death. Cell cycle and Western blot analyses highlighted the activation of a mitochondrial-dependent apoptosis, which involves caspase 7, 8, 9 and Cytochrome C release. Using pharmacological inhibitions and RNAi experiments, we showed that ER-stress induced autophagy has a major role in triggering bDHC-cell death.Our findings describe the mechanism through which bDHC promotes tumor selective inhibition of proliferation, providing unequivocal evidence of the role of autophagy in contrasting the proliferation of colon cancer cells.
    Tipo de documento:
    Referencia
    Referencia del producto:
    05-636
    Nombre del producto:
    Anti-phospho-Histone H2A.X (Ser139) Antibody, clone JBW301
  • Post-translational modifications of three members of the human MAP1LC3 family and detection of a novel type of modification for MAP1LC3B. 12740394

    The molecular machinery required for autophagy is highly conserved in all eukaryotes as seen by the high degree of conservation of proteins involved in the formation of the autophagosome membranes. Recently, both yeast Apg8p and its rat homologue Map1lc3 were identified as essential constituents of autophagosome membrane as a processed form. In addition, both the yeast and human proteins exist in two modified forms produced by a series of post-translational modifications including a critical C-terminal cleavage after a conserved Gly residue, and the smaller processed form is associated with the autophagosome membranes. Herein, we report the identification and characterization of three human orthologs of the rat Map1LC3, named MAP1LC3A, MAP1LC3B, and MAP1LC3C. We show that the three isoforms of human MAP1LC3 exhibit distinct expression patterns in different human tissues. Importantly, we found that the three isoforms of MAP1LC3 differ in their post-translation modifications. Although MAP1LC3A and MAP1LC3C are produced by the proteolytic cleavage after the conserved C-terminal Gly residue, like their rat counterpart, MAP1LC3B does not undergo C-terminal cleavage and exists in a single modified form. The essential site for the distinct post-translation modification of MAP1LC3B is Lys-122 rather than the conserved Gly-120. Subcellular localization by cell fractionation and immunofluorescence revealed that three human isoforms are associated with membranes involved in the autophagic pathway. These results revealed different regulation of the three human isoforms of MAP1LC3 and implicate that the three isoforms may have different physiological functions.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • The inhibition of autophagy sensitises colon cancer cells with wild-type p53 but not mutant p53 to topotecan treatment. 23024792

    Topotecan produces DNA damage that induces autophagy in cancer cells. In this study, sensitising topotecan to colon cancer cells with different P53 status via modulation of autophagy was examined.The DNA damage induced by topotecan treatment resulted in cytoprotective autophagy in colon cancer cells with wild-type p53. However, in cells with mutant p53 or p53 knockout, treatment with topotecan induced autophagy-associated cell death. In wild-type p53 colon cancer cells, topotecan treatment activated p53, upregulated the expression of sestrin 2, induced the phosphorylation of the AMPKα subunit at Thr172, and inhibited the mTORC1 pathway. Furthermore, the inhibition of autophagy enhanced the anti-tumour effect of topotecan treatment in wild-type p53 colon cancer cells but alleviated the anti-tumour effect of topotecan treatment in p53 knockout cells in vivo.These results imply that the wild-type p53-dependent induction of cytoprotective autophagy is one of the cellular responses that determines the cellular sensitivity to the DNA-damaging drug topotecan. Therefore, our study provides a potential therapeutic strategy that utilises a combination of DNA-damaging agents and autophagy inhibitors for the treatment of colon cancer with wild-type p53.
    Tipo de documento:
    Referencia
    Referencia del producto:
    05-224
    Nombre del producto:
    Anti-p53 Antibody, clone BP53-12
  • A Regulatory Signaling Loop Comprising the PGAM5 Phosphatase and CK2 Controls Receptor-Mediated Mitophagy. 24746696

    Mitochondrial autophagy, or mitophagy, is a major mechanism involved in mitochondrial quality control via selectively removing damaged or unwanted mitochondria. Interactions between LC3 and mitophagy receptors such as FUNDC1, which harbors an LC3-interacting region (LIR), are essential for this selective process. However, how mitochondrial stresses are sensed to activate receptor-mediated mitophagy remains poorly defined. Here, we identify that the mitochondrially localized PGAM5 phosphatase interacts with and dephosphorylates FUNDC1 at serine 13 (Ser-13) upon hypoxia or carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP) treatment. Dephosphorylation of FUNDC1 catalyzed by PGAM5 enhances its interaction with LC3, which is abrogated following knockdown of PGAM5 or the introduction of a cell-permeable unphosphorylated peptide encompassing the Ser-13 and LIR of FUNDC1. We further observed that CK2 phosphorylates FUNDC1 to reverse the effect of PGAM5 in mitophagy activation. Our results reveal a mechanistic signaling pathway linking mitochondria-damaging signals to the dephosphorylation of FUNDC1 by PGAM5, which ultimately induces mitophagy.
    Tipo de documento:
    Referencia
    Referencia del producto:
    ABC506
    Nombre del producto:
  • Combined epidermal growth factor receptor and Beclin1 autophagic protein expression analysis identifies different clinical presentations, responses to chemo- and radiothe ... 25821789

    Dysregulated EGFR in glioblastoma may inactivate the key autophagy protein Beclin1. Each of high EGFR and low Beclin1 protein expression, independently, has been associated with tumor progression and poor prognosis. High (H) compared to low (L) expression of EGFR and Beclin1 is here correlated with main clinical data in 117 patients after chemo- and radiotherapy. H-EGFR correlated with low Karnofsky performance and worse neurological performance status, higher incidence of synchronous multifocality, poor radiological evidence of response, shorter progression disease-free (PDFS), and overall survival (OS). H-Beclin1 cases showed better Karnofsky performance status, higher incidence of objective response, longer PDFS, and OS. A mutual strengthening effect emerges in correlative power of stratified L-EGFR and H-Beclin1 expression with incidence of radiological response after treatment, unifocal disease, and better prognosis, thus identifying an even longer OS group (30 months median OS compared to 18 months in L-EGFR, 15 months in H-Beclin1, and 11 months in all GBs) (P = 0.0001). Combined L-EGFR + H-Beclin1 expression may represent a biomarker in identifying relatively favorable clinical presentations and prognosis, thus envisaging possible EGFR/Beclin1-targeted therapies.
    Tipo de documento:
    Referencia
    Referencia del producto:
    04-1116