Millipore Sigma Vibrant Logo
 

TRAPeze


47 Results Búsqueda avanzada  
Mostrar
Productos (0)
Documentos (44)

Acote sus resultados Utilice los filtros siguientes para refinar su búsqueda

Tipo de documento

  • (28)
  • (14)
  • (2)
¿No encuentra lo que está buscando?
Póngase en contacto con
el Servicio de Atención
al Cliente

 
¿Necesita ayuda para encontrar un documento?
  • Skeletal site-specific characterization of orofacial and iliac crest human bone marrow stromal cells in same individuals. 16403496

    Autologous grafts from axial and appendicular bones commonly used to repair orofacial bone defects often result in unfavorable outcome. This clinical observation, along with the fact that many bone abnormalities are limited to craniofacial bones, suggests that there are significant differences in bone metabolism in orofacial, axial and appendicular bones. It is plausible that these differences are dictated by site-specificity of embryological progenitor cells and osteogenic properties of resident multipotent human bone marrow stromal cells (hBMSCs). This study investigated skeletal site-specific phenotypic and functional differences between orofacial (maxilla and mandible) and axial (iliac crest) hBMSCs in vitro and in vivo. Primary cultures of maxilla, mandible and iliac crest hBMSCs were established with and without osteogenic inducers. Site-specific characterization included colony forming efficiency, cell proliferation, life span before senescence, relative presence of surface markers, adipogenesis, osteogenesis and transplantation in immunocompromised mice to compare bone regenerative capacity. Compared with iliac crest cells, orofacial hBMSCs (OF-MSCs) proliferated more rapidly with delayed senescence, expressed higher levels of alkaline phosphatase and demonstrated more calcium accumulation in vitro. Cells isolated from the three skeletal sites were variably positive for STRO 1, a marker of hBMSCs. OF-MSCs formed more bone in vivo, while iliac crest hBMSCs formed more compacted bone that included hematopoietic tissue and were more responsive in vitro and in vivo to osteogenic and adipogenic inductions. These data demonstrate that hBMSCs from the same individuals differ in vitro and in vivo in a skeletal site-specific fashion and identified orofacial marrow stromal cells as unique cell populations. Further understanding of site-specific properties of hBMSCs and their impact on site-specific bone diseases and regeneration are needed.
    Tipo de documento:
    Referencia
    Referencia del producto:
    S7700
    Nombre del producto:
    TRAPeze® Telomerase Detection Kit
  • Abeta peptides accelerate the senescence of endothelial cells in vitro and in vivo, impairing angiogenesis. 20207941

    Cerebral amyloid angiopathy (CAA) caused by amyloid beta (Abeta) deposition around brain microvessels results in vascular degenerative changes. Antiangiogenic Abeta properties are known to contribute to the compromised cerebrovascular architecture. Here we hypothesize that Abeta peptides impair angiogenesis by causing endothelial cells to enter senescence at an early stage of vascular development. Wild-type (WT) Abeta and its mutated variant E22Q peptide, endowed with marked vascular tropism, were used in this study. In vivo, in zebrafish embryos, the WT or E22Q peptides reduced embryo survival with an IC(50) of 6.1 and 4.7 microM, respectively. The 2.5 microM concentration, showing minimal toxicity, was chosen. Alkaline phosphatase staining revealed disorganized vessel patterning, narrowing, and reduced branching of vessels. Beta-galactosidase staining and the cyclin-dependent kinase inhibitor p21 expression, indicative of senescence, were increased. In vitro, WT and E22Q reduced endothelial cell survival with an IC(50) of 12.3 and 8.8 microM, respectively. The 5 microM concentration, devoid of acute effects on the endothelium, was applied chronically to long-term cultured human umbilical vein endothelial cells (HUVECs). We observed reduced cumulative population doubling, which coincided with beta-galactosidase accumulation, down-regulation of telomerase reverse-transcriptase mRNA expression, decreased telomerase activity, and p21 activation. Senescent HUVECs showed marked angiogenesis impairment, as Abeta treatment reduced tube sprouting. The endothelial injuries caused by the E22Q peptide were much more aggressive than those induced by the WT peptide. Premature Abeta-induced senescence of the endothelium, producing progressive alterations of microvessel morphology and functions, may represent one of the underlying mechanisms for sporadic or heritable CAA.
    Tipo de documento:
    Referencia
    Referencia del producto:
    S7710
    Nombre del producto:
    TRAPEZE® RT Telomerase Detection Kit