Millipore Sigma Vibrant Logo
 

CD133


219 Results Búsqueda avanzada  
Mostrar
Productos (0)
Documentos (217)

Acote sus resultados Utilice los filtros siguientes para refinar su búsqueda

Tipo de documento

  • (113)
  • (101)
  • (3)
¿No encuentra lo que está buscando?
Póngase en contacto con
el Servicio de Atención
al Cliente

 
¿Necesita ayuda para encontrar un documento?
  • CD133 expression and identification of CD133 nestin positive cells in rhabdomyosarcomas and rhabdomyosarcoma cell lines. 21841243

    Background: Co-expression of CD133, cell surface glycoprotein, and nestin, an intermediate filament protein, was determined to be a marker of neural stem cells and of cancer stem cells in neurogenic tumors. Methods: We examined the expression of CD133 and nestin in ten tumor tissue samples taken from patients with rhabdomyosarcomas and in five rhabdomyosarcoma cell lines. Immunohistochemistry and immunofluorescence were used to examine FFPE tumor tissue samples. Cell lines were analyzed by immunofluorescence, immunoblotting, flow cytometry, and RT-PCR. Functional assays (clonogenic in vitro assay and tumorigenic in vivo assay) were also performed using these cell lines. Results: CD133 and nestin were detected in all 10 tumor tissue samples and in all 5 cell lines; however, the frequency of CD133+, Nes+, and CD133+ /Nes + cells, as well as the intensity of fluorescence varied in individual samples or cell lines. The expression of CD133 and nestin was subsequently confirmed in all cell lines by immunoblotting. Furthermore, we observed an increasing expression of CD133 in relation to the cultivation. All cell lines were positive for Oct3/4 and nucleostemin; NSTS-11 cells were also able to form xenograft tumors in mice. Conclusion: Our results represent the first evidence of CD133 expression in rhabdomyosarcoma tissue and in rhabdomyosarcoma cell lines. In addition, the co-expression of CD133 and nestin as well as results of the functional assays suggest a possible presence of cancer cells with a stem-like phenotype in these tumors.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AP124F
    Nombre del producto:
    Goat Anti-Mouse IgG Antibody, (H+L) FITC Conjugated
  • Identification of novel Prominin-1/CD133 splice variants with alternative C-termini and their expression in epididymis and testis. 15316084

    Prominin-1/CD133 is a five-membrane-span glycoprotein that is thought to act as an organizer of plasma-membrane protrusions. Here, we report the molecular and cell-biological characterization of four novel prominin-1 splice variants isolated from a mouse testis cDNA library and referred to as prominin-1.s3 to prominin-1.s6. Compared with kidney-derived prominin-1.s1, the s3, s4 and s5 variants contain a distinct cytoplasmic C-terminal domain. The s4 and s5 variants bear, in addition, two and one inframe deletion(s), respectively, in the extracellular domains. The s6 variant displays a truncated C-terminal domain caused by a premature termination resulting from intron retention. Upon their ectopic expression in Chinese hamster ovary cells, the s3 and s6 variants were found to be concentrated in plasma-membrane protrusions, whereas the s4 and s5 variants did not reach the cell surface. Biochemical analyses suggest that most of the prominin-1 in the adult male reproductive system is expressed as the s6 variant. Immunohistological and electron microscopic analyses show that prominin-1 is: (1) confined to the apical surface of the epithelium all along the epididymal duct, with the exception of the initial segment; (2) concentrated in stereocilia of the epididymal duct epithelium; and (3) found on the tail of developing spermatozoa in seminiferous tubules. Our data suggest that prominin-1 is involved in the formation and/or stabilization of epididymal stereocilia and the tail of spermatozoa, and hence might play a dual role in the biogenesis of spermatozoa.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Spatial distribution of prominin-1 (CD133)-positive cells within germinative zones of the vertebrate brain. 23723983

    In mammals, embryonic neural progenitors as well as adult neural stem cells can be prospectively isolated based on the cell surface expression of prominin-1 (CD133), a plasma membrane glycoprotein. In contrast, characterization of neural progenitors in non-mammalian vertebrates endowed with significant constitutive neurogenesis and inherent self-repair ability is hampered by the lack of suitable cell surface markers. Here, we have investigated whether prominin-1-orthologues of the major non-mammalian vertebrate model organisms show any degree of conservation as for their association with neurogenic geminative zones within the central nervous system (CNS) as they do in mammals or associated with activated neural progenitors during provoked neurogenesis in the regenerating CNS.We have recently identified prominin-1 orthologues from zebrafish, axolotl and chicken. The spatial distribution of prominin-1-positive cells--in comparison to those of mice--was mapped in the intact brain in these organisms by non-radioactive in situ hybridization combined with detection of proliferating neural progenitors, marked either by proliferating cell nuclear antigen or 5-bromo-deoxyuridine. Furthermore, distribution of prominin-1 transcripts was investigated in the regenerating spinal cord of injured axolotl.Remarkably, a conserved association of prominin-1 with germinative zones of the CNS was uncovered as manifested in a significant co-localization with cell proliferation markers during normal constitutive neurogenesis in all species investigated. Moreover, an enhanced expression of prominin-1 became evident associated with provoked, compensatory neurogenesis during the epimorphic regeneration of the axolotl spinal cord. Interestingly, significant prominin-1-expressing cell populations were also detected at distinct extraventricular (parenchymal) locations in the CNS of all vertebrate species being suggestive of further, non-neurogenic neural function(s).Collectively, our work provides the first data set describing a comparative analysis of prominin-1-positive progenitor cells across species establishing a framework for further functional characterization in the context of regeneration.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AB9610
    Nombre del producto:
    Anti-Olig-2 Antibody
  • Prominin-1 (CD133) defines both stem and non-stem cell populations in CNS development and gliomas. 25184684

    Prominin-1 (CD133) is a commonly used cancer stem cell marker in central nervous system (CNS) tumors including glioblastoma (GBM). Expression of Prom1 in cancer is thought to parallel expression and function in normal stem cells. Using RNA in situ hybridization and antibody tools capable of detecting multiple isoforms of Prom1, we find evidence for two distinct Prom1 cell populations in mouse brain. Prom1 RNA is first expressed in stem/progenitor cells of the ventricular zone in embryonic brain. Conversely, in adult mouse brain Prom1 RNA is low in SVZ/SGZ stem cell zones but high in a rare but widely distributed cell population (Prom1(hi)). Lineage marker analysis reveals Prom1(hi) cells are Olig2+Sox2+ glia but Olig1/2 knockout mice lacking oligodendroglia retain Prom1(hi) cells. Bromodeoxyuridine labeling identifies Prom1(hi) as slow-dividing distributed progenitors distinct from NG2+Olig2+ oligodendrocyte progenitors. In adult human brain, PROM1 cells are rarely positive for OLIG2, but express astroglial markers GFAP and SOX2. Variability of PROM1 expression levels in human GBM and patient-derived xenografts (PDX) - from no expression to strong, uniform expression--highlights that PROM1 may not always be associated with or restricted to cancer stem cells. TCGA and PDX data show that high expression of PROM1 correlates with poor overall survival. Within proneural subclass tumors, high PROM1 expression correlates inversely with IDH1 (R132H) mutation. These findings support PROM1 as a tumor cell-intrinsic marker related to GBM survival, independent of its stem cell properties, and highlight potentially divergent roles for this protein in normal mouse and human glia.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation. 19092805

    Cancer stem cells are remarkably similar to normal stem cells: both self-renew, are multipotent and express common surface markers, for example, prominin 1 (PROM1, also called CD133). What remains unclear is whether cancer stem cells are the direct progeny of mutated stem cells or more mature cells that reacquire stem cell properties during tumour formation. Answering this question will require knowledge of whether normal stem cells are susceptible to cancer-causing mutations; however, this has proved difficult to test because the identity of most adult tissue stem cells is not known. Here, using an inducible Cre, nuclear LacZ reporter allele knocked into the Prom1 locus (Prom1(C-L)), we show that Prom1 is expressed in a variety of developing and adult tissues. Lineage-tracing studies of adult Prom1(+/C-L) mice containing the Rosa26-YFP reporter allele showed that Prom1(+) cells are located at the base of crypts in the small intestine, co-express Lgr5 (ref. 2), generate the entire intestinal epithelium, and are therefore the small intestinal stem cell. Prom1 was reported recently to mark cancer stem cells of human intestinal tumours that arise frequently as a consequence of aberrant wingless (Wnt) signalling. Activation of endogenous Wnt signalling in Prom1(+/C-L) mice containing a Cre-dependent mutant allele of beta-catenin (Ctnnb1(lox(ex3))) resulted in a gross disruption of crypt architecture and a disproportionate expansion of Prom1(+) cells at the crypt base. Lineage tracing demonstrated that the progeny of these cells replaced the mucosa of the entire small intestine with neoplastic tissue that was characterized by focal high-grade intraepithelial neoplasia and crypt adenoma formation. Although all neoplastic cells arose from Prom1(+) cells in these mice, only 7% of tumour cells retained Prom1 expression. Our data indicate that Prom1 marks stem cells in the adult small intestine that are susceptible to transformation into tumours retaining a fraction of mutant Prom1(+) tumour cells.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Atypical nuclear localization of CD133 plasma membrane glycoprotein in rhabdomyosarcoma cell lines. 25977066

    CD133 (also known as prominin-1) is a cell surface glycoprotein that is widely used for the identification of stem cells. Furthermore, its glycosylated epitope, AC133, has recently been discussed as a marker of cancer stem cells in various human malignancies. During our recent experiments on rhabdomyosarcomas (RMS), we unexpectedly identified an atypical nuclear localization of CD133 in a relatively stable subset of cells in five RMS cell lines established in our laboratory. To the best of our knowledge, this atypical localization of CD133 has not yet been proven or analyzed in detail in cancer cells. In the present study, we verified the nuclear localization of CD133 in RMS cells using three independent anti-CD133 antibodies, including both rabbit polyclonal and mouse monoclonal antibodies. Indirect immunofluorescence and confocal microscopy followed by software cross-section analysis, transmission electron microscopy and cell fractionation with immunoblotting were also employed, and all the results undeniably confirmed the presence of CD133 in the nuclei of stable minor subpopulations of all five RMS cell lines. The proportion of cells showing an exclusive nuclear localization of CD133 ranged from 3.4 to 7.5%, with only minor differences observed among the individual anti-CD133 antibodies. Although the role of CD133 in the cell nucleus remains unclear, these results clearly indicate that this atypical nuclear localization of CD133 in a minor subpopulation of cancer cells is a common phenomenon in RMS cell lines.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB4399
  • CD133 expressing pericytes and relationship to SDF-1 and CXCR4 in spinal cord injury. 20374199

    Compression injury to the spinal cord (SC) results in vascular changes affecting the severity of the primary damage of the spinal cord. The recruitment of bone marrow (BM)-derived cells contribute to revascularization and tissue regeneration in a wide range of ischemic pathologies. Involvement of these cells in the vascular repair process has been investigated in an animal model of spinal cord injury (SCI). Temporal gene and protein expression of the BM-derived stem cell markers CD133 and CD34, of the mobilization factor SDF-1 and its receptor CXCR4 were determined following SC compression injury in rats. CD133 was expressed in uninjured tissue by cells surrounding arterioles identified as pericytes by co-expression of alpha-SMA. These cells mostly disappeared 2 days after injury but repopulated the tissue after 2 weeks. CD34 was expressed by endothelial cells and CD11b+ macrophages/microglia invading the injured tissue as observed 2 weeks following injury. SDF-1 was induced in reactive astrocytes and endothelial cells not until 2 weeks post-SCI. Comparison of the variation between CD34, CD133, CXCR4, and SDF-1 revealed a corresponding trend of CD133 with the SDF-1 expression. This study showed that resident microvascular CD133+ pericytes with presumptive stem cell potential are sensitive to SCI. Their decline following SCI and the delayed induction of SDF-1 may contribute to vessel destabilisation and inefficient revascularization. In addition, none of the analyzed markers could be assigned clearly to BM-derived cells. Together, our findings suggest that effective recruitment of pericytes may serve as a therapeutic option to improve microcirculation after SCI.
    Tipo de documento:
    Referencia
    Referencia del producto:
    CBL171
    Nombre del producto:
    Anti-Actin Antibody, smooth muscle, clone ASM-1
  • Expression and localisation of osteopontin and prominin-1 (CD133) in patients with endometriosis. 23545719

    In this study, we investigated the expression and localisation of the proteins, osteopontin (OPN) and prominin-1 (CD133), as well as the plasma OPN levels in the endometrium of patients with endometriosis. Samples of ectopic endometriotic lesions and normal endometrium were obtained from 31 women with endometriosis and 28 healthy control subjects. The mRNA and protein expression of OPN and CD133 was analysed by real‑time RT-PCR and immunohistochemistry. The plasma levels of OPN were determined by ELISA. Our results revealed that OPN mRNA and protein expression, as well as its release in the blood, was significantly increased in the endometriotic lesions in comparison to normal tissue. Although the presence of CD133+ cells was detected in the normal endometrium, as well as in the endometriosis specimens, a significant quantitative variation of this protein was not demonstrated in the patients with endometriosis. In conclusion, our data indicate that OPN is involved in the development of endometriosis by enhancing the invasiveness, proliferation and survival of endometrial cells in ectopic lesions. CD133 cannot be used as a disease marker for endometriosis, although an involvement of this protein in the pathogenesis of endometriosis cannot be excluded.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AB1870
    Nombre del producto:
    Anti-Osteopontin Antibody