Our broad portfolio consists of multiplex panels that allow you to choose, within the panel, analytes that best meet your needs. On a separate tab you can choose the premixed cytokine format or a single plex kit.
Cell Signaling Kits & MAPmates™
Choose fixed kits that allow you to explore entire pathways or processes. Or design your own kits by choosing single plex MAPmates™, following the provided guidelines.
The following MAPmates™ should not be plexed together:
-MAPmates™ that require a different assay buffer
-Phospho-specific and total MAPmate™ pairs, e.g. total GSK3β and GSK3β (Ser 9)
-PanTyr and site-specific MAPmates™, e.g. Phospho-EGF Receptor and phospho-STAT1 (Tyr701)
-More than 1 phospho-MAPmate™ for a single target (Akt, STAT3)
-GAPDH and β-Tubulin cannot be plexed with kits or MAPmates™ containing panTyr
.
Catalogue Number
Ordering Description
Qty/Pack
List
This item has been added to favorites.
Select A Species, Panel Type, Kit or Sample Type
To begin designing your MILLIPLEX® MAP kit select a species, a panel type or kit of interest.
Custom Premix Selecting "Custom Premix" option means that all of the beads you have chosen will be premixed in manufacturing before the kit is sent to you.
Catalogue Number
Ordering Description
Qty/Pack
List
This item has been added to favorites.
Species
Panel Type
Selected Kit
Qty
Catalogue Number
Ordering Description
Qty/Pack
List Price
96-Well Plate
Qty
Catalogue Number
Ordering Description
Qty/Pack
List Price
Add Additional Reagents (Buffer and Detection Kit is required for use with MAPmates)
Qty
Catalogue Number
Ordering Description
Qty/Pack
List Price
48-602MAG
Buffer Detection Kit for Magnetic Beads
1 Kit
Space Saver Option Customers purchasing multiple kits may choose to save storage space by eliminating the kit packaging and receiving their multiplex assay components in plastic bags for more compact storage.
This item has been added to favorites.
The Product Has Been Added To Your Cart
You can now customize another kit, choose a premixed kit, check out or close the ordering tool.
Two groups of prolactinoma cell lines were identified. One group (responder) expresses both D(2) dopamine receptors and an autocrine loop mediated by nerve growth factor (NGF) and one group (nonresponder) lacks both D(2) receptors and NGF production. D(2) receptor expression in these cell lines is dependent on NGF. Indeed, NGF inactivation in responder cells decreases D(2) receptor density, while NGF treatment induces D(2) receptor expression in nonresponders. Here we show that inactivation of p75(NGFR), but not of trkA, resulted in D(2) receptor loss in responder cells and prevented D(2) receptor expression induced by NGF in the nonresponder. Analysis of nuclear factor-kappaB (NF-kappaB) nuclear accumulation and binding to corresponding DNA consensus sequences indicated that in NGF-secreting responder cells, but not in nonresponders, NF-kappaB is constitutively activated. Moreover, NGF treatment of nonresponder cells induced both nuclear translocation and DNA binding activity of NF-kappaB complexes containing p50, p65/RelA, and cRel subunits, an effect prevented by anti-p75(NGFR) antibodies. Disruption of NF-kappaB nuclear translocation by SN50 remarkably impaired D(2) receptor expression in responder cells and prevented D(2) gene expression induced by NGF in nonresponders. These data indicate that in prolactinoma cells the effect of NGF on D(2) receptor expression is mediated by p75(NGFR) in a trkA-independent way and that NGF stimulation of p75(NGFR) activates NF-kappaB, which is required for D(2) gene expression. We thus suggest that NF-kappaB is a key transcriptional regulator of the D(2) gene and that this mechanism may not be confined to pituitary tumors, but could also extend to other dopaminergic systems.
Human bone marrow stromal cells have been examined with an immuno-electron microscopy technique in order to better define their structure and function in normal hematopoiesis. Bone marrow fragments from normal donors, after mild permeabilization and glutaraldehyde prefixation were labeled with the Me20.4 Mab, which recognizes the low affinity nerve growth factor (NGFR) and was recently described as specifically identifying fibroblastic-like bone marrow stromal cells. Five nm gold immuno-conjugates served as markers. NGFR+ cells were showing either a star-shape, with long and convoluted dendritic projections, and branching with each other to form a complex system of lacunae upon which hematopoietic cells were arranged. Other NGFR+ cells had an elongated spindle-like morphology. NGFR+ dendrites were seen in close contact with each other and with the different hematopoietic cells, although definite junctions were never noticed. NGFR+ dendrites were also observed surrounding mature plasma cells, in close apposition with adipocytes or surrounding bone marrow sinusoids. These findings may give some clues about the function of the bone marrow stromal cells, which are known to be involved in the homing and recirculation of hemopoietic cells; in addition, the presence and distribution of NGFR in the bone marrow stroma may support the recent evidence of a co-stimulatory effect of NGF in early hematopoiesis.
The functions of the low-affinity p75 nerve growth factor receptor (p75(NGFR)) in the central nervous system were explored in vivo. In normal mice, approximately 25 percent of the cholinergic basal forebrain neurons did not express TrkA and died between postnatal day 6 and 15. This loss did not occur in p75(NGFR)-deficient mice or in normal mice systemically injected with a p75(NGFR)-inhibiting peptide. Control, but not p75(NGFR)-deficient, mice also had fewer cholinergic striatal interneurons. Apparently, p75(NGFR) mediates apoptosis of these developing neurons in the absence of TrkA, and modulation of p75(NGFR) can promote neuronal survival. Cholinergic basal forebrain neurons are involved in learning and memory.
The skin constitutes the largest sensorial organ. Its nervous system consists of different types of afferent nerve fibers which spread out immediately beneath the skin surface to sense temperature, touch and pain.
The effects on anatomy and behavior of a ribosomal inactivating protein (saporin) coupled to a monoclonal antibody against the low-affinity NGF receptor (NGFr) were examined. In adult rats, NGFr is expressed predominantly in cholinergic neurons of the medial septal area (MSA), diagonal band nuclei, and nucleus basalis magnocellularis (nBM), but also in noncholinergic cerebellar Purkinje cells. Rats with immunotoxin injections to the MSA, nBM, and lateral ventricle were compared to controls on a spatial and cued reference memory task in the Morris maze. Toxin injections to the MSA slightly impaired the initial, but not asymptotic, phase of spatial navigation. Injections to the nBM impaired all phases of spatial navigation. Cued navigation, however, was not affected in either the MSA or nBM group. The ventricular injections severely affected spatial and cued navigation. Acetylcholinesterase (AChE) histochemistry and NGFr and choline acetyltransferase immunohistochemistry revealed a loss of (1) almost all NGFr-positive cholinergic neurons in the MSA and AChE fibers in hippocampus (MSA group); (2) almost all NGFr neurons in the nBM, some in the MSA, most AChE fibers in neocortex and some in the hippocampus (nBM group), and (3) almost all NGFr neurons in the MSA and nBM and their corresponding hippocampal and cortical AChE fibers (ventricular group). Cholinergic nBM projections to the amygdala were largely preserved in all groups. The amount of cholinergic fiber loss in the cortex correlated modestly, but significantly, with the severity of impairment of the asymptotic phase of performance of the spatial task. An unambiguous interpretation of the anatomical locus of behavioral deficits was not possible because of damage to cholinergic striatal interneurons (nBM group) and to noncholinergic cerebellar Purkinje cells (ventricular group). These data suggest that the cholinergic cortical system is critical to the performance of this spatial memory task. Cholinergic denervation of the hippocampus alone, however, is not sufficient to impair markedly performance of this task.