Millipore Sigma Vibrant Logo
Attention: We have moved. Merck Millipore products are no longer available for purchase on MerckMillipore.com.Learn More
 

tau+aggregation


36 Results Advanced Search  
Showing
Products (0)
Documents (35)
Can't Find What You're Looking For?
Contact Customer Service

 
  • A NH2 tau fragment targets neuronal mitochondria at AD synapses: possible implications for neurodegeneration. 20571215

    Synapses are ultrastructural sites for memory storage in brain, and synaptic damage is the best pathologic correlate of cognitive decline in Alzheimer's disease (AD). Post-translational hyperphosphorylation, enzyme-mediated truncation, conformational modifications, and aggregation of tau protein into neurofibrillary tangles (NFTs) are hallmarks for a heterogeneous group of neurodegenerative disorders, so-called tauopathies. AD is a secondary tauopathy since it is pathologically distinguished by the presence of amyloid-beta (Abeta)-containing senile plaques and the presence of tau-positive NFTs in the neocortex and hippocampus. Here, we report that a 20-22 kDa NH2-truncated tau fragment is largely enriched in human mitochondria from cryopreserved synaptosomes of AD brains and that its amount in terminal fields correlates with the pathological synaptic changes and with the organelle functional impairment. This NH2-truncated tau form is also found in other human, not AD-tauopathies, while its presence in AD patients is linked to Abeta multimeric species and likely to pathology severity. Finally native, patient-derived, Abeta oligomers-enriched extracts likely impair the mitochondrial function by the in vitro production of 20-22 kDa NH2-tau fragments in mature human SY5Y and in rat hippocampal neurons. Thus our findings suggest that the mitochondrial NH2-derived tau peptide distribution may exacerbate the synapse degeneration occurring in tauopathies, including AD, and sustain the in vivo NH-2 tau cleavage inhibitors as an alternative drug discovery strategies for AD therapy.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Rapid tau aggregation and delayed hippocampal neuronal death induced by persistent thrombin signaling. 12821672

    Tau hyperphosphorylation, leading to self-aggregation, is widely held to underlie the neurofibrillary degeneration found in Alzheimer's disease (AD) and other tauopathies. However, it is unclear exactly what environmental factors may trigger this pathogenetic tau hyperphosphorylation. From several perspectives, the coagulation serine protease, thrombin, has been implicated in AD and activates several different protein kinase pathways but has not previously been shown how it may contribute to AD pathogenesis. Here we report that nanomolar thrombin induced rapid tau hyperphosphorylation and aggregation in murine hippocampal neurons via protease-activated receptors, which was followed by delayed synaptophysin reduction and apoptotic neuronal death. Mechanistic study revealed that a persistent thrombin signaling via protease-activated receptor 4 and prolonged downstream p44/42 mitogenactivated protein kinase activation are at least in part responsible. These results pathogenetically linked thrombin to subpopulations of AD and other tauopathies associated with cerebrovascular damage. Such knowledge may be instrumental in transforming therapeutic paradigms.
    Document Type:
    Reference
    Product Catalog Number:
    AB1518
    Product Catalog Name:
    Anti-Neurofibrillary Tangles Antibody (Anti-Neurofibrillary Tangles Antibody)
  • Abnormal Tau Phosphorylation in the Thorny Excrescences of CA3 Hippocampal Neurons in Patients with Alzheimer\'s Disease. 21677375

    A key symptom in the early stages of Alzheimer\'s disease (AD) is the loss of declarative memory. The anatomical substrate that supports this kind of memory involves the neural circuits of the medial temporal lobe, and in particular, of the hippocampal formation and adjacent cortex. A main feature of AD is the abnormal phosphorylation of the tau protein and the presence of tangles. The sequence of cellular changes related to tau phosphorylation and tangle formation has been studied with an antibody that binds to diffuse phosphotau (AT8). Moreover, another tau antibody (PHF-1) has been used to follow the pathway of neurofibrillary (tau aggregation) degeneration in AD. We have used a variety of quantitative immunocytochemical techniques and confocal microscopy to visualize and characterize neurons labeled with AT8 and PHF-1 antibodies. We present here the rather unexpected discovery that in AD, there is conspicuous abnormal phosphorylation of the tau protein in a selective subset of dendritic spines. We identified these spines as the typical thorny excrescences of hippocampal CA3 neurons in a pre-tangle state. Since thorny excrescences represent a major synaptic target of granule cell axons (mossy fibers), such aberrant phosphorylation may play an essential role in the memory impairment typical of AD patients.
    Document Type:
    Reference
    Product Catalog Number:
    AB5905
    Product Catalog Name:
    Anti-Vesicular Glutamate Transporter 1 Antibody (Anti-Vesicular Glutamate Transporter 1 Antibody)
  • Tau pathogenesis is promoted by Aβ1-42 but not Aβ1-40. 25417177

    The relationship between the pathogenic amyloid β-peptide species Aβ1-42 and tau pathology has been well studied and suggests that Aβ1-42 can accelerate tau pathology in vitro and in vivo. The manners if any in which Aβ1-40 interacts with tau remains poorly understood. In order to answer this question, we used cell-based system, transgenic fly and transgenic mice as models to study the interaction between Aβ1-42 and Aβ1-40.In our established cellular model, live cell imaging (using confocal microscopy) combined with biochemical data showed that exposure to Aβ1-42 induced cleavage, phosphorylation and aggregation of wild-type/full length tau while exposure to Aβ1-40 didn't. Functional studies with Aβ1-40 were carried out in tau-GFP transgenic flies and showed that Aβ1-42, as previously reported, disrupted cytoskeletal structure while Aβ1-40 had no effect at same dose. To further explore how Aβ1-40 affects tau pathology in vivo, P301S mice (tau transgenic mice) were injected intracerebrally with either Aβ1-42 or Aβ1-40. We found that treatment with Aβ1-42 induced tau phosphorylation, cleavage and aggregation of tau in P301S mice. By contrast, Aβ1-40 injection didn't alter total tau, phospho-tau (recognized by PHF-1) or cleavage of tau, but interestingly, phosphorylation at Ser262 was shown to be significantly decreased after direct inject of Aβ1-40 into the entorhinal cortex of P301S mice.These results demonstrate that Aβ1-40 plays different role in tau pathogenesis compared to Aβ1-42. Aβ1-40 may have a protective role in tau pathogenesis by reducing phosphorylation at Ser262, which has been shown to be neurotoxic.
    Document Type:
    Reference
    Product Catalog Number:
    MAB5430
    Product Catalog Name:
    Anti-Tau Antibody, Caspase Cleaved (truncated at Asp421) (Anti-Tau Antibody, Caspase Cleaved (truncated at Asp421))
  • Cleavage of tau by asparagine endopeptidase mediates the neurofibrillary pathology in Alzheimer's disease. 25326800

    Neurofibrillary tangles (NFTs), composed of truncated and hyperphosphorylated tau, are a common feature of numerous aging-related neurodegenerative diseases, including Alzheimer's disease (AD). However, the molecular mechanisms mediating tau truncation and aggregation during aging remain elusive. Here we show that asparagine endopeptidase (AEP), a lysosomal cysteine proteinase, is activated during aging and proteolytically degrades tau, abolishes its microtubule assembly function, induces tau aggregation and triggers neurodegeneration. AEP is upregulated and active during aging and is activated in human AD brain and tau P301S-transgenic mice with synaptic pathology and behavioral impairments, leading to tau truncation in NFTs. Tau P301S-transgenic mice with deletion of the gene encoding AEP show substantially reduced tau hyperphosphorylation, less synapse loss and rescue of impaired hippocampal synaptic function and cognitive deficits. Mice infected with adeno-associated virus encoding an uncleavable tau mutant showed attenuated pathological and behavioral defects compared to mice injected with adeno-associated virus encoding tau P301S. Together, these observations indicate that AEP acts as a crucial mediator of tau-related clinical and neuropathological changes. Inhibition of AEP may be therapeutically useful for treating tau-mediated neurodegenerative diseases.
    Document Type:
    Reference
    Product Catalog Number:
    ABN1703
    Product Catalog Name:
    Anti-Tau, AEP-cleaved (N368) Antibody (Anti-Tau, AEP-cleaved (N368) Antibody )
  • Tau aggregation and toxicity in a cell culture model of tauopathy. 17428800

    Intracellular aggregation of the microtubule-associated protein tau into filamentous inclusions is a defining characteristic of Alzheimer disease. Because appearance of tau-aggregate bearing lesions correlates with both cognitive decline and neurodegeneration, it has been hypothesized that tau aggregation may be directly toxic to cells that harbor them. Testing this hypothesis in cell culture has been complicated by the resistance of full-length tau isoforms to aggregation over experimentally tractable time periods. To overcome this limitation, a small-molecule agonist of the tau aggregation reaction, Congo red, was used to drive aggregation within HEK-293 cells expressing full-length tau isoform htau40. Formation of detergent-insoluble aggregates was both time and agonist concentration dependent. At 10 microM Congo red, detergent-insoluble aggregates appeared with pseudo-first order kinetics and a half-life of approximately 5 days. By 7 days in culture, total tau levels increased 2-fold, with approximately 30% of total tau converted into detergent-insoluble aggregates. Agonist addition also led to rapid losses in the tubulin binding activity of tau, although tau was not hyperphosphorylated as judged by occupancy of phosphorylation sites Ser396/Ser404. Tau aggregation was associated with decreased viability as detected by ToPro-3 uptake. The results, which establish a new approach for analysis of tau aggregation in cells independent of tau hyperphosphorylation, suggest that conformational changes associated with aggregation are incompatible with microtubule binding, and that toxicity associated with intracellular tau aggregation is not acute but develops over a period of days.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Hippocampal tauopathy in tau transgenic mice coincides with impaired hippocampus-dependent learning and memory, and attenuated late-phase long-term depression of synaptic ... 21167950

    We evaluated various forms of hippocampus-dependent learning and memory, and hippocampal synaptic plasticity in THY-Tau22 transgenic mice, a murine tauopathy model that expresses double-mutated 4-repeat human tau, and shows neuropathological tau hyperphosphorylation and aggregation throughout the brain. Focussing on hippocampus, immunohistochemical studies in aged THY-Tau22 mice revealed prominent hyper- and abnormal phosphorylation of tau in CA1 region, and an increase in glial fibrillary acidic protein (GFAP) in hippocampus, but without signs of neuronal loss. These mice displayed spatial, social, and contextual learning and memory defects that could not be reduced to subtle neuromotor disability. The behavioral defects coincided with changes in hippocampal synaptic functioning and plasticity as measured in paired-pulse and novel long-term depression protocols. These results indicate that hippocampal tauopathy without neuronal cell loss can impair neural and behavioral plasticity, and further show that transgenic mice, such as the THY-Tau22 strain, might be useful for preclinical research on tauopathy pathogenesis and possible treatment.
    Document Type:
    Reference
    Product Catalog Number:
    MAB5406
    Product Catalog Name:
    Anti-GAD67 Antibody, clone 1G10.2 (Anti-GAD67 Antibody, clone 1G10.2)
  • Chronic stress exacerbates tau pathology, neurodegeneration, and cognitive performance through a corticotropin-releasing factor receptor-dependent mechanism in a transgen ... 21976528

    Because overactivation of the hypothalamic-pituitary-adrenal (HPA) axis occurs in Alzheimer's disease (AD), dysregulation of stress neuromediators may play a mechanistic role in the pathophysiology of AD. However, the effects of stress on tau phosphorylation are poorly understood, and the relationship between corticosterone and corticotropin-releasing factor (CRF) on both β-amyloid (Aβ) and tau pathology remain unclear. Therefore, we first established a model of chronic stress, which exacerbates Aβ accumulation in Tg2576 mice and then extended this stress paradigm to a tau transgenic mouse model with the P301S mutation (PS19) that displays tau hyperphosphorylation, insoluble tau inclusions and neurodegeneration. We show for the first time that both Tg2576 and PS19 mice demonstrate a heightened HPA stress profile in the unstressed state. In Tg2576 mice, 1 month of restraint/isolation (RI) stress increased Aβ levels, suppressed microglial activation, and worsened spatial and fear memory compared with nonstressed mice. In PS19 mice, RI stress promoted tau hyperphosphorylation, insoluble tau aggregation, neurodegeneration, and fear-memory impairments. These effects were not mimicked by chronic corticosterone administration but were prevented by pre-stress administration of a CRF receptor type 1 (CRF(1)) antagonist. The role for a CRF(1)-dependent mechanism was further supported by the finding that mice overexpressing CRF had increased hyperphosphorylated tau compared with wild-type littermates. Together, these results implicate HPA dysregulation in AD neuropathogenesis and suggest that prolonged stress may increase Aβ and tau hyperphosphorylation. These studies also implicate CRF in AD pathophysiology and suggest that pharmacological manipulation of this neuropeptide may be a potential therapeutic strategy for AD.
    Document Type:
    Reference
    Product Catalog Number:
    MAB377
    Product Catalog Name:
    Anti-NeuN Antibody, clone A60 (Anti-NeuN Antibody, clone A60)
  • Regulation of tau pathology by the microglial fractalkine receptor. 20920788

    Aggregates of the hyperphosphorylated microtubule-associated protein tau (MAPT) are an invariant neuropathological feature of tauopathies. Here, we show that microglial neuroinflammation promotes MAPT phosphorylation and aggregation. First, lipopolysaccharide-induced microglial activation promotes hyperphosphorylation of endogenous mouse MAPT in nontransgenic mice that is further enhanced in mice lacking the microglial-specific fractalkine receptor (CX3CR1) and is dependent upon functional toll-like receptor 4 and interleukin-1 (IL-1) receptors. Second, humanized MAPT transgenic mice lacking CX3CR1 exhibited enhanced MAPT phosphorylation and aggregation as well as behavioral impairments that correlated with increased levels of active p38 MAPK. Third, in vitro experiments demonstrate that microglial activation elevates the level of active p38 MAPK and enhances MAPT hyperphosphorylation within neurons that can be blocked by administration of an interleukin-1 receptor antagonist and a specific p38 MAPK inhibitor. Taken together, our results suggest that CX3CR1 and IL-1/p38 MAPK may serve as novel therapeutic targets for human tauopathies.
    Document Type:
    Reference
    Product Catalog Number:
    04-1075
  • TDP-43 suppresses tau expression via promoting its mRNA instability. 28335005

    In the brains of individuals with Alzheimer's disease (AD) and chronic traumatic encephalopathy, tau pathology is accompanied usually by intracellular aggregation of transactive response DNA-binding protein 43 (TDP-43). However, the role of TDP-43 in tau pathogenesis is not understood. Here, we investigated the role of TDP-43 in tau expression in vitro and in vivo. We found that TDP-43 suppressed tau expression by promoting its mRNA instability through the UG repeats of its 3΄-untranslated region (3΄-UTR). The C-terminal region of TDP-43 was required for this function. Neurodegenerative diseases-causing TDP-43 mutations affected tau mRNA instability differentially, in that some promoted and others did not significantly affect tau mRNA instability. The expression levels of tau and TDP-43 were inverse in the frontal cortex and the cerebellum. Accompanied with cytoplasmic accumulation of TDP-43, tau expression was elevated in TDP-43M337V transgenic mouse brains. The level of TDP-43, which is decreased in AD brains, was found to correlate negatively with the tau level in human brain. Our findings indicate that TDP-43 suppresses tau expression by promoting the instability of its mRNA. Down-regulation of TDP-43 may be involved in the tau pathology in AD and related neurodegenerative disorders.
    Document Type:
    Reference
    Product Catalog Number:
    17-700
    Product Catalog Name:
    Magna RIP™ RNA-Binding Protein Immunoprecipitation Kit (Magna RIP™ RNA-Binding Protein Immunoprecipitation Kit)