Millipore Sigma Vibrant Logo
 

western blotting


2718 Results Gelişmiş Arama  
Showing

Sonuçlarınızı Daraltın Use the filters below to refine your search

Aradığınızı Bulamadınız mı?
Müşteri Hizmetleri ile
İletişime Geçin

 
MilliporeSigma Documents

Doküman ararken yardıma ihtiyacınız var mı?

  • Analiz sertifikaları, Kalite Sertifikaları veya Güvenlik Bilgi Formlarını aramak için Doküman Arayıcı’yı kullanmayı deneyin.
     
  • Kullanım Kılavuzlarına erişmek için yardıma ihtiyacınız olur ise Müşteri Hizmetleri ile iletişime geçebilirsiniz.
  • Genetic analysis of yeast Yip1p function reveals a requirement for Golgi-localized rab proteins and rab-Guanine nucleotide dissociation inhibitor. 15611160

    Yip1p is the first identified Rab-interacting membrane protein and the founder member of the YIP1 family, with both orthologs and paralogs found in all eukaryotic genomes. The exact role of Yip1p is unclear; YIP1 is an essential gene and defective alleles severely disrupt membrane transport and inhibit ER vesicle budding. Yip1p has the ability to physically interact with Rab proteins and the nature of this interaction has led to suggestions that Yip1p may function in the process by which Rab proteins translocate between cytosol and membranes. In this study we have investigated the physiological requirements for Yip1p action. Yip1p function requires Rab-GDI and Rab proteins, and several mutations that abrogate Yip1p function lack Rab-interacting capability. We have previously shown that Yip1p in detergent extracts has the capability to physically interact with Rab proteins in a promiscuous manner; however, a genetic analysis that covers every yeast Rab reveals that the Rab requirement in vivo is exclusively confined to a subset of Rab proteins that are localized to the Golgi apparatus.
    Document Type:
    Reference
    Product Catalog Number:
    MAB3580
    Product Catalog Name:
    Anti-Green Fluorescent Protein Antibody
  • Lyssavirus matrix protein induces apoptosis by a TRAIL-dependent mechanism involving caspase-8 activation. 15163747

    Lyssaviruses, which are members of the Rhabdoviridae family, induce apoptosis, which plays an important role in the neuropathogenesis of rabies. However, the mechanisms by which these viruses mediate neuronal apoptosis have not been elucidated. Here we demonstrate that the early induction of apoptosis in a model of lyssavirus-infected neuroblastoma cells involves a TRAIL-dependent pathway requiring the activation of caspase-8 but not of caspase-9 or caspase-10. The activation of caspase-8 results in the activation of caspase-3 and caspase-6, as shown by an increase in the cleavage of the specific caspase substrate in lyssavirus-infected cells. However, neither caspase-1 nor caspase-2 activity was detected during the early phase of infection. Lyssavirus-mediated cell death involves an interaction between TRAIL receptors and TRAIL, as demonstrated by experiments using neutralizing antibodies and soluble decoy TRAIL-R1/R2 receptors. We also demonstrated that the decapsidation and replication of lyssavirus are essential for inducing apoptosis, as supported by UV inactivation, cycloheximide treatment, and the use of bafilomycin A1 to inhibit endosomal acidification. Transfection of cells with the matrix protein induced apoptosis using pathways similar to those described in the context of viral infection. Furthermore, our data suggest that the matrix protein of lyssaviruses plays a major role in the early induction of TRAIL-mediated apoptosis by the release of a soluble, active form of TRAIL. In our model, Fas ligand (CD95L) appears to play a limited role in lyssavirus-mediated neuroblastoma cell death. Similarly, tumor necrosis factor alpha does not appear to play an important role.
    Document Type:
    Reference
    Product Catalog Number:
    AB1879
  • RET oncoproteins induce tyrosine phosphorylation changes of proteins involved in RNA metabolism. 16843637

    We report the identification of proteins induced in response to RET/PTC2, an oncogene implicated in thyroid cancers. Anti-phosphotyrosine antibody affinity resin was used to purify Tyr(P)-containing and interacting proteins from 293T and NIH3T3 cells which were transfected with kinase active or inactive RET/PTC and RETMEN2 oncogenes. Proteins were separated by one-dimensional SDS-PAGE, extracted by in-gel digestion, and identified by MALDI-TOF peptide mass fingerprinting. The expression and tyrosine phosphorylation of Sam68, a protein implicated in mRNA nucleocytoplasmic translocation and splicing, were further examined in RET-transfected cells and thyroid tumors. Of relevance, cells transfected with RETMEN2B examined for anti-phosphotyrosine bound proteins, showed other proteins implicated in splicing: DEAD-box p68 RNA helicase, SYNCRIP, and hnRNP K. Western blotting analysis suggested that these proteins are singularly tyrosine phosphorylated in RETMEN2B-transfected cells, and that they constitutively bind with Sam68. The study concludes that regulation of splicing factors is likely to be important in RET-mediated thyroid carcinogenesis.
    Document Type:
    Reference
    Product Catalog Number:
    05-321
    Product Catalog Name:
    Anti-Phosphotyrosine Antibody, clone 4G10®
  • Histone H3 tail clipping regulates gene expression. 19079264

    Induction of gene expression in yeast and human cells involves changes in the histone modifications associated with promoters. Here we identify a histone H3 endopeptidase activity in Saccharomyces cerevisiae that may regulate these events. The endopeptidase cleaves H3 after Ala21, generating a histone that lacks the first 21 residues and shows a preference for H3 tails carrying repressive modifications. In vivo, the H3 N terminus is clipped, specifically within the promoters of genes following the induction of transcription. H3 clipping precedes the process of histone eviction seen when genes become fully active. A truncated H3 product is not generated in yeast carrying a mutation of the endopeptidase recognition site (H3 Q19A L20A) and gene induction is defective in these cells. These findings identify clipping of H3 tails as a previously uncharacterized modification of promoter-bound nucleosomes, which may result in the localized clearing of repressive signals during the induction of gene expression.
    Document Type:
    Reference
    Product Catalog Number:
    07-677
  • Redundant requirement for a pair of PROTEIN ARGININE METHYLTRANSFERASE4 homologs for the proper regulation of Arabidopsis flowering time. 18660432

    CARM1/PRMT4 (for COACTIVATOR-ASSOCIATED ARGININE METHYLTRANSFERASE1/PROTEIN ARGININE METHYLTRANSFERASE4) catalyzes asymmetric dimethylation on arginine (Arg), and its functions in gene regulation is understood only in animal systems. Here, we describe AtPRMT4a and AtPRMT4b as a pair of Arabidopsis (Arabidopsis thaliana) homologs of mammalian CARM1/PRMT4. Recombinant AtPRMT4a and AtPRMT4b could asymmetrically dimethylate histone H3 at Arg-2, Arg-17, Arg-26, and myelin basic protein in vitro. Both AtPRMT4a and AtPRMT4b exhibited nuclear as well as cytoplasmic distribution and were expressed ubiquitously in all tissues throughout development. Glutathione S-transferase pull-down assays revealed that AtPRMT4a and AtPRMT4b could form homodimers and heterodimers in vitro, and formation of the heterodimer was further confirmed by bimolecular fluorescence complementation. Simultaneous lesions in AtPRMT4a and AtPRMT4b genes led to delayed flowering, whereas single mutations in either AtPRMT4a or AtPRMT4b did not cause major developmental defects, indicating the redundancy of AtPRMT4a and AtPRMT4b. Genetic analysis also indicated that atprmt4a atprmt4b double mutants phenocopied autonomous pathway mutants. Finally, we found that asymmetric methylation at Arg-17 of histone H3 was greatly reduced in atprmt4a atprmt4b double mutants. Taken together, our results demonstrate that AtPRMT4a and AtPRMT4b are required for proper regulation of flowering time mainly through the FLOWERING LOCUS C-dependent pathway.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • The receptor for advanced glycation end-products (RAGE) directly binds to ERK by a D-domain-like docking site. 12935895

    The receptor for advanced glycation end-products (RAGE)-mediated cellular activation through the mitogen-activated protein kinase (MAPK) cascade, activation of NF-kappaB and Rho family small G-proteins, cdc42/Rac, is implicated in the pathogenesis of inflammatory disorders and tumor growth/metastasis. However, the precise molecular mechanisms for the initiation of cell signaling by RAGE remain to be elucidated. In this study, proteins which directly bind to the cytoplasmic C-terminus of RAGE were purified from rat lung extracts using an affinity chromatography technique and identified to be extracellular signal-regulated protein kinase-1 and -2 (ERK-1/2). Their interactions were confirmed by immunoprecipitation of ERK-1/2 from RAGE-expressing HT1080 cell extracts with anti-RAGE antibody. Furthermore, the augmentation of kinase activity of RAGE-bound ERK upon the stimulation of cells with amphoterin was demonstrated by determining the phosphorylation level of myelin basic protein, an ERK substrate. In vitro binding studies using a series of C-terminal deletion mutants of human RAGE revealed the importance of the membrane-proximal cytoplasmic region of RAGE for the direct ERK-RAGE interaction. This region contained a sequence similar to the D-domain, a ERK docking site which is conserved in some ERK substrates including MAPK-interacting kinase-1/2, mitogen- and stress-activated protein kinase-1, and ribosomal S6 kinase. These data suggest that ERK may play a role in RAGE signaling through direct interaction with RAGE.
    Document Type:
    Reference
    Product Catalog Number:
    05-429
    Product Catalog Name:
    Anti-phospho-MBP Antibody, clone P12
  • Should any reagents be avoided with the use of Immobilon Western Substrates?…

    When using the Immobilon Western HRP substrate, Azide should not be used in the buffers and reagents, as it inhibits HRP activity.
    Document Type:
    FAQ
    Product Catalog Number:
    C3117
    Product Catalog Name:
    Immobilon® Membranes, Sandwiches and Blotting Filter Paper
  • Elucidating a normal function of huntingtin by functional and microarray analysis of huntingtin-null mouse embryonic fibroblasts. 18412970

    The polyglutamine expansion in huntingtin (Htt) protein is a cause of Huntington's disease (HD). Htt is an essential gene as deletion of the mouse Htt gene homolog (Hdh) is embryonic lethal in mice. Therefore, in addition to elucidating the mechanisms responsible for polyQ-mediated pathology, it is also important to understand the normal function of Htt protein for both basic biology and for HD.To systematically search for a mouse Htt function, we took advantage of the Hdh +/- and Hdh-floxed mice and generated four mouse embryonic fibroblast (MEF) cells lines which contain a single copy of the Hdh gene (Hdh-HET) and four MEF lines in which the Hdh gene was deleted (Hdh-KO). The function of Htt in calcium (Ca2+) signaling was analyzed in Ca2+ imaging experiments with generated cell lines. We found that the cytoplasmic Ca2+ spikes resulting from the activation of inositol 1,4,5-trisphosphate receptor (InsP3R) and the ensuing mitochondrial Ca2+ signals were suppressed in the Hdh-KO cells when compared to Hdh-HET cells. Furthermore, in experiments with permeabilized cells we found that the InsP3-sensitivity of Ca2+ mobilization from endoplasmic reticulum was reduced in Hdh-KO cells. These results indicated that Htt plays an important role in modulating InsP3R-mediated Ca2+ signaling. To further evaluate function of Htt, we performed genome-wide transcription profiling of generated Hdh-HET and Hdh-KO cells by microarray. Our results revealed that 106 unique transcripts were downregulated by more than two-fold with p less than 0.05 and 173 unique transcripts were upregulated at least two-fold with p less than 0.05 in Hdh-KO cells when compared to Hdh-HET cells. The microarray results were confirmed by quantitative real-time PCR for a number of affected transcripts. Several signaling pathways affected by Hdh gene deletion were identified from annotation of the microarray results.Functional analysis of generated Htt-null MEF cells revealed that Htt plays a direct role in Ca2+ signaling by modulating InsP3R sensitivity to InsP3. The genome-wide transcriptional profiling of Htt-null cells yielded novel and unique information about the normal function of Htt in cells, which may contribute to our understanding and treatment of HD.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Phosphorylation of extracellular signal-regulated kinases 1/2 is predominantly enhanced in the microglia of the rat spinal cord following dorsal root transection. 12809691

    The present study was initiated to investigate the role of extracellular signal-regulated kinases (ERK) 1/2 signaling pathway in the early response of spinal cord and associated dorsal root ganglion (DRG) to rhizotomy by using Western blotting and immunohistochemical techniques in a rat model of L3 and L4 dorsal root transection. The results showed that there were a considerable amount of total and phosphorylated ERK 1/2 protein in both spinal cord and DRG in normal animals killed under pentobarbital anesthesia. The total ERK 1/2 distributed in both glia and neurons, while phosphorylated ERK 1/2 dominantly existed in the latter in the gray matter of spinal cord, as demonstrated with double immunofluorescent staining. Twenty-four and forty-eight hours after axotomy, the phosphorylation level of ERK 1/2 in the operation side of dorsal spinal cord was much higher than that in the contralateral side, while the total ERK 1/2 level seemed unchanged. The increased expression of Fos protein was also seen in the dorsal spinal cord at lesion side twelve and twenty-four hours after axotomy. Double fluorescent staining proved that the phosphorylated ERK 1/2 positive cells in the ipsilateral dorsal spinal cord after axotomy predominantly were microglia and small portion was oligodendrocytes, whereas the Fos expression was mainly in neurons. In normal DRG, most neurons, especially the medium and small-sized ones, and the satellite cells contained total ERK 1/2-like immunoreactivity, whereas only a small portion of neurons and satellite cells contained phosphorylated ERK 1/2. After unilateral dorsal rhizotomy, there were no detectable changes for the phosphorylation of ERK 1/2 in either neurons or satellite cells in DRG.Collectively, the present results suggest that both ERK and Fos signal pathways involve the cellular activation in the spinal cord following dorsal rhizotomy, with ERK mainly in microglia and Fos in neurons. The increase of phosphorylation of ERK 1/2 in microglia of spinal cord after rhizotomy implicates that ERK signaling pathway involves intracellular activity of microglia responding to the experimental injury.
    Document Type:
    Reference
    Product Catalog Number:
    MAB1580
    Product Catalog Name:
    Anti-Oligodendrocytes Antibody, clone NS-1