Millipore Sigma Vibrant Logo
 

multiple+sclerosis


282 Results Gelişmiş Arama  
Showing

Sonuçlarınızı Daraltın Use the filters below to refine your search

SourceType

Aradığınızı Bulamadınız mı?
Müşteri Hizmetleri ile
İletişime Geçin

 
MilliporeSigma Documents

Doküman ararken yardıma ihtiyacınız var mı?

  • Analiz sertifikaları, Kalite Sertifikaları veya Güvenlik Bilgi Formlarını aramak için Doküman Arayıcı’yı kullanmayı deneyin.
     
  • Kullanım Kılavuzlarına erişmek için yardıma ihtiyacınız olur ise Müşteri Hizmetleri ile iletişime geçebilirsiniz.
  • Interleukin-22 is increased in multiple sclerosis patients and targets astrocytes. 26077779

    Increasing evidences link T helper 17 (Th17) cells with multiple sclerosis (MS). In this context, interleukin-22 (IL-22), a Th17-linked cytokine, has been implicated in blood brain barrier breakdown and lymphocyte infiltration. Furthermore, polymorphism between MS patients and controls has been recently described in the gene coding for IL-22 binding protein (IL-22BP). Here, we aimed to better characterize IL-22 in the context of MS.IL-22 and IL-22BP expressions were assessed by ELISA and qPCR in the following compartments of MS patients and control subjects: (1) the serum, (2) the cerebrospinal fluid, and (3) immune cells of peripheral blood. Identification of the IL-22 receptor subunit, IL-22R1, was performed by immunohistochemistry and immunofluorescence in human brain tissues and human primary astrocytes. The role of IL-22 on human primary astrocytes was evaluated using 7-AAD and annexin V, markers of cell viability and apoptosis, respectively.In a cohort of 141 MS patients and healthy control (HC) subjects, we found that serum levels of IL-22 were significantly higher in relapsing MS patients than in HC but also remitting and progressive MS patients. Monocytes and monocyte-derived dendritic cells contained an enhanced expression of mRNA coding for IL-22BP as compared to HC. Using immunohistochemistry and confocal microscopy, we found that IL-22 and its receptor were detected on astrocytes of brain tissues from both control subjects and MS patients, although in the latter, the expression was higher around blood vessels and in MS plaques. Cytometry-based functional assays revealed that addition of IL-22 improved the survival of human primary astrocytes. Furthermore, tumor necrosis factor α-treated astrocytes had a better long-term survival capacity upon IL-22 co-treatment. This protective effect of IL-22 seemed to be conferred, at least partially, by a decreased apoptosis.We show that (1) there is a dysregulation in the expression of IL-22 and its antagonist, IL-22BP, in MS patients, (2) IL-22 targets specifically astrocytes in the human brain, and (3) this cytokine confers an increased survival of the latter cells.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Evidence for human herpesvirus 6 variant A antibodies in multiple sclerosis: diagnostic and therapeutic implications. 17849318

    Human herpesvirus 6 (HHV-6) has been linked to the pathogenesis of multiple sclerosis (MS). HHV-6 antibodies in serum and cerebrospinal fluid (CSF) of 27 patients with clinically definite MS (CDMS) were compared with age- and sex-matched controls, including various other neurological diseases and symptoms (OND). In addition, we studied a series of 19 patients with clinically or laboratory supported possible MS (CPMS). Seroprevalence to HHV-6A was 100% in patients with MS, both in CDMS and CPMS, compared to 69.2% in patients with OND (P = .001 and .007). The mean immunoglobulin G (IgG) titers were significantly higher in patients with CDMS and CPMS than in controls (P = .005 and .00002). The proportion of acute primary infections without CSF involvement was similar in all groups; however, primary infections with intrathecal HHV-6 antibody production were more frequent in MS. In CSF, HHV-6A-specific antibodies were present in three (11.5%) and four (21.1%) patients with CDMS and CPMS, compared to none with OND (P = .06 and .01, respectively). Serological suggestions to HHV-6A infection occurred more often in both CDMS and CPMS than in OND (14.8% versus 21.1% versus 3.8%). We conclude that a subpopulation of MS patients, and even a greater proportion of possible MS subjects, has serological evidence of HHV-6A infection, which might provide new markers for diagnosis and therapy.
    Document Type:
    Reference
    Product Catalog Number:
    MAB8537
    Product Catalog Name:
    Anti-Herpes Virus 6 Antibody, A & B, gp 60/110
  • Cholinergic imbalance in the multiple sclerosis hippocampus. 21691765

    Hippocampal pathology was shown to be extensive in multiple sclerosis (MS) and is associated with memory impairment. In this post-mortem study, we investigated hippocampal tissue from MS and Alzheimer's disease (AD) patients and compared these to non-neurological controls. By means of biochemical assessment, (immuno)histochemistry and western blot analyses, we detected substantial alterations in the cholinergic neurotransmitter system in the MS hippocampus, which were different from those in AD hippocampus. In MS hippocampus, activity and protein expression of choline acetyltransferase (ChAT), the acetylcholine synthesizing enzyme, was decreased, while the activity and protein expression of acetylcholinesterase (AChE), the acetylcholine degrading enzyme, was found to be unaltered. In contrast, in AD hippocampus both ChAT and AChE enzyme activity and protein expression was decreased. Our findings reveal an MS-specific cholinergic imbalance in the hippocampus, which may be instrumental in terms of future treatment options for memory problems in this disease.
    Document Type:
    Reference
    Product Catalog Number:
    AB144P
    Product Catalog Name:
    Anti-Choline Acetyltransferase Antibody
  • LINGO-1, a transmembrane signaling protein, inhibits oligodendrocyte differentiation and myelination through intercellular self-interactions. 22514275

    Overcoming remyelination failure is a major goal of new therapies for demyelinating diseases like multiple sclerosis. LINGO-1, a key negative regulator of myelination, is a transmembrane signaling protein expressed in both neurons and oligodendrocytes. In neurons, LINGO-1 is an integral component of the Nogo receptor complex, which inhibits axonal growth via RhoA. Because the only ligand-binding subunit of this complex, the Nogo receptor, is absent in oligodendrocytes, the extracellular signals that inhibit myelination through a LINGO-1-mediated mechanism are unknown. Here we show that LINGO-1 inhibits oligodendrocyte terminal differentiation through intercellular interactions and is capable of a self-association in trans. Consistent with previous reports, overexpression of full-length LINGO-1 inhibited differentiation of oligodendrocyte precursor cells (OPCs). Unexpectedly, treatment with a soluble recombinant LINGO-1 ectodomain also had an inhibitory effect on OPCs and decreased myelinated axonal segments in cocultures with neurons from dorsal root ganglia. We demonstrated LINGO-1-mediated inhibition of OPCs through intercellular signaling by using a surface-bound LINGO-1 construct expressed ectopically in astrocytes. Further investigation showed that the soluble LINGO-1 ectodomain can interact with itself in trans by binding to CHO cells expressing full-length LINGO-1. Finally, we observed that soluble LINGO-1 could activate RhoA in OPCs. We propose that LINGO-1 acts as both a ligand and a receptor and that the mechanism by which it negatively regulates OPC differentiation and myelination is mediated by a homophilic intercellular interaction. Disruption of this protein-protein interaction could lead to a decrease of LINGO-1 inhibition and an increase in myelination.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Analysis of the mitochondrial proteome in multiple sclerosis cortex. 21295140

    Mitochondrial dysfunction has been proposed to play a role in the neuropathology of multiple sclerosis (MS). Previously, we reported significant alterations in the transcription of nuclear-encoded electron transport chain genes in MS and confirmed translational alterations for components of Complexes I and III that resulted in reductions in their activity. To more thoroughly and efficiently elucidate potential alterations in the expression of mitochondrial and related proteins, we have characterized the mitochondrial proteome in postmortem MS and control cortex using Surface-Enhanced Laser Desorption Ionization Time of Flight Mass Spectrometry (SELDI-TOF-MS). Using principal component analysis (PCA) and hierarchical clustering techniques we were able to analyze the differential patterns of SELDI-TOF spectra to reveal clusters of peaks which distinguished MS from control samples. Four proteins in particular were responsible for distinguishing disease from control. Peptide fingerprint mapping unambiguously identified these differentially expressed proteins. Three proteins identified are involved in respiration including cytochrome c oxidase subunit 5b (COX5b), the brain specific isozyme of creatine kinase, and hemoglobin β-chain. The fourth protein identified was myelin basic protein (MBP). We then investigated whether these alterations were consistent in the experimental autoimmune encephalomyelitis (EAE) mouse model of MS. We found that MBP was similarly altered in EAE but the respiratory proteins were not. These data indicate that while the EAE mouse model may mimic aspects of MS neuropathology which result from inflammatory demyelinating events, there is another distinct mechanism involved in mitochondrial dysfunction in gray matter in MS which is not modeled in EAE.
    Document Type:
    Reference
    Product Catalog Number:
    05-233
    Product Catalog Name:
    Anti-Nitrotyrosine Antibody, clone 1A6
  • Cuprizone-induced demyelination and demyelination-associated inflammation result in different proton magnetic resonance metabolite spectra. 25802215

    Conventional MRI is frequently used during the diagnosis of multiple sclerosis but provides only little additional pathological information. Proton MRS ((1) H-MRS), however, provides biochemical information on the lesion pathology by visualization of a spectrum of metabolites. In this study we aimed to better understand the changes in metabolite concentrations following demyelination of the white matter. Therefore, we used the cuprizone model, a well-established mouse model to mimic type III human multiple sclerosis demyelinating lesions. First, we identified CX3 CL1/CX3 CR1 signaling as a major regulator of microglial activity in the cuprizone mouse model. Compared with control groups (heterozygous CX3 CR1(+/-) C57BL/6 mice and wild type CX3 CR1(+/+) C57BL/6 mice), microgliosis, astrogliosis, oligodendrocyte cell death and demyelination were shown to be highly reduced or absent in CX3 CR1(-/-) C57BL/6 mice. Second, we show that (1) H-MRS metabolite spectra are different when comparing cuprizone-treated CX3 CR1(-/-) mice showing mild demyelination with cuprizone-treated CX3 CR1(+/+) mice showing severe demyelination and demyelination-associated inflammation. Following cuprizone treatment, CX3 CR1(+/+) mice show a decrease in the Glu, tCho and tNAA concentrations as well as an increased Tau concentration. In contrast, following cuprizone treatment CX3 CR1(-/-) mice only showed a decrease in tCho and tNAA concentrations. Therefore, (1) H-MRS might possibly allow us to discriminate demyelination from demyelination-associated inflammation via changes in Tau and Glu concentration. In addition, the observed decrease in tCho concentration in cuprizone-induced demyelinating lesions should be further explored as a possible diagnostic tool for the early identification of human MS type III lesions.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • GABAergic signaling and connectivity on Purkinje cells are impaired in experimental autoimmune encephalomyelitis. 22349452

    A significant proportion of multiple sclerosis (MS) patients have functionally relevant cerebellar deficits, which significantly contribute to disability. Although clinical and experimental studies have been conducted to understand the pathophysiology of cerebellar dysfunction in MS, no electrophysiological and morphological studies have investigated potential alterations of synaptic connections of cerebellar Purkinje cells (PC). For this reason we analyzed cerebellar PC GABAergic connectivity in mice with MOG((35-55))-induced experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. We observed a strong reduction in the frequency of the spontaneous inhibitory post-synaptic currents (IPSCs) recorded from PCs during the symptomatic phase of the disease, and in presence of prominent microglia activation not only in the white matter (WM) but also in the molecular layer (ML). The massive GABAergic innervation on PCs from basket and stellate cells was reduced and associated to a decrease of the number of these inhibitory interneurons. On the contrary no significant loss of the PCs could be detected. Incubation of interleukin-1beta (IL-1β) was sufficient to mimic the electrophysiological alterations observed in EAE mice. We thus suggest that microglia and pro-inflammatory cytokines, together with a degeneration of basket and stellate cells and their synaptic terminals, contribute to impair GABAergic transmission on PCs during EAE. Our results support a growing body of evidence that GABAergic signaling is compromised in EAE and in MS, and show a selective susceptibility to neuronal and synaptic degeneration of cerebellar inhibitory interneurons.
    Document Type:
    Reference
    Product Catalog Number:
    AP308P
    Product Catalog Name:
    Goat Anti-Mouse IgG Antibody, (H+L) HRP conjugate
  • Astrogliosis in EAE spinal cord: derivation from radial glia, and relationships to oligodendroglia. 17009237

    A prominent feature of multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE) is the accumulation of enlarged, multipolar glial fibrillary acidic protein (GFAP) and brain lipid binding protein (BLBP) immunoreactive astroglia within and at the margins of the inflammatory demyelinative lesions. Whether this astrogliosis is due to both astroglial hyperplasia and hypertrophy or solely to astroglial hypertrophy is controversial. We now report that coincident with the first appearance of inflammation and clinical deficits in mice with myelin oligodendrocyte glycoprotein peptide (MOG peptide)-induced EAE, the radially oriented, bipolar, GFAP, and BLBP positive cells (adult radial glia) present in normal spinal cord white matter undergo mitosis and phenotypic transformation to hypertrophic astroglia. To facilitate visualization of relationships between these hypertrophic astroglia and dying and regenerating oligodendroglia, we used mice that express enhanced green fluorescent protein (EGFP) in cells of the oligodendroglial lineage. During the first week after onset of illness, markedly swollen EGFP+ cells without processes were seen within lesions, whereas EGFP+ cells that expressed immunoreactive cleaved caspase-3 were uncommon. These observations support the hypothesis that necrosis contributes to oligodendroglial loss early in the course of EAE. Later in the illness, EGFP+ cells accumulated amongst hypertrophic astroglia at the margins of the lesions, while the lesions themselves remained depleted of oligodendroglia, suggesting that migration of oligodendroglial lineage cells into the lesions was retarded by the intense perilesional gliosis.
    Document Type:
    Reference
    Product Catalog Number:
    AB5804
    Product Catalog Name:
    Anti-Glial Fibrillary Acidic Protein (GFAP) Antibody
  • Fumarates modulate microglia activation through a novel HCAR2 signaling pathway and rescue synaptic dysregulation in inflamed CNS. 25920452

    Dimethyl fumarate (DMF), recently approved as an oral immunomodulatory treatment for relapsing-remitting multiple sclerosis (MS), metabolizes to monomethyl fumarate (MMF) which crosses the blood-brain barrier and has demonstrated neuroprotective effects in experimental studies. We postulated that MMF exerts neuroprotective effects through modulation of microglia activation, a critical component of the neuroinflammatory cascade that occurs in neurodegenerative diseases such as MS. To ascertain our hypothesis and define the mechanistic pathways involved in the modulating effect of fumarates, we used real-time PCR and biochemical assays to assess changes in the molecular and functional phenotype of microglia, quantitative Western blotting to monitor activation of postulated pathway components, and ex vivo whole-cell patch clamp recording of excitatory post-synaptic currents in corticostriatal slices from mice with experimental autoimmune encephalomyelitis (EAE), a model for MS, to study synaptic transmission. We show that exposure to MMF switches the molecular and functional phenotype of activated microglia from classically activated, pro-inflammatory type to alternatively activated, neuroprotective one, through activation of the hydroxycarboxylic acid receptor 2 (HCAR2). We validate a downstream pathway mediated through the AMPK-Sirt1 axis resulting in deacetylation, and thereby inhibition, of NF-κB and, consequently, of secretion of pro-inflammatory molecules. We demonstrate through ex vivo monitoring of spontaneous glutamate-mediated excitatory post-synaptic currents of single neurons in corticostriatal slices from EAE mice that the neuroprotective effect of DMF was exerted on neurons at pre-synaptic terminals by modulating glutamate release. By exposing control slices to untreated and MMF-treated activated microglia, we confirm the modulating effect of MMF on microglia function and, thereby, its indirect neuroprotective effect at post-synaptic level. These findings, whereby DMF-induced activation of a new HCAR2-dependent pathway on microglia leads to the modulation of neuroinflammation and restores synaptic alterations occurring in EAE, represent a possible novel mechanism of action for DMF in MS.
    Document Type:
    Reference
    Product Catalog Number:
    AP307P
    Product Catalog Name:
    Goat Anti-Rabbit IgG Antibody, (H+L) HRP conjugate
  • Myelin repair and functional recovery mediated by neural cell transplantation in a mouse model of multiple sclerosis. 23471865

    Cellular therapies are becoming a major focus for the treatment of demyelinating diseases such as multiple sclerosis (MS), therefore it is important to identify the most effective cell types that promote myelin repair. Several components contribute to the relative benefits of specific cell types including the overall efficacy of the cell therapy, the reproducibility of treatment, the mechanisms of action of distinct cell types and the ease of isolation and generation of therapeutic populations. A range of distinct cell populations promote functional recovery in animal models of MS including neural stem cells and mesenchymal stem cells derived from different tissues. Each of these cell populations has advantages and disadvantages and likely works through distinct mechanisms. The relevance of such mechanisms to myelin repair in the adult central nervous system is unclear since the therapeutic cells are generally derived from developing animals. Here we describe the isolation and characterization of a population of neural cells from the adult spinal cord that are characterized by the expression of the cell surface glycoprotein NG2. In functional studies, injection of adult NG2(+) cells into mice with ongoing MOG35-55-induced experimental autoimmune encephalomyelitis (EAE) enhanced remyelination in the CNS while the number of CD3(+) T cells in areas of spinal cord demyelination was reduced approximately three-fold. In vivo studies indicated that in EAE, NG2(+) cells stimulated endogenous repair while in vitro they responded to signals in areas of induced inflammation by differentiating into oligodendrocytes. These results suggested that adult NG2(+) cells represent a useful cell population for promoting neural repair in a variety of different conditions including demyelinating diseases such as MS.
    Document Type:
    Reference
    Product Catalog Number:
    AB5320
    Product Catalog Name:
    Anti-NG2 Chondroitin Sulfate Proteoglycan Antibody