Millipore Sigma Vibrant Logo
 

drug discovery OR stratm


606 Results Gelişmiş Arama  
Showing

Sonuçlarınızı Daraltın Use the filters below to refine your search

Aradığınızı Bulamadınız mı?
Müşteri Hizmetleri ile
İletişime Geçin

 
MilliporeSigma Documents

Doküman ararken yardıma ihtiyacınız var mı?

  • Analiz sertifikaları, Kalite Sertifikaları veya Güvenlik Bilgi Formlarını aramak için Doküman Arayıcı’yı kullanmayı deneyin.
     
  • Kullanım Kılavuzlarına erişmek için yardıma ihtiyacınız olur ise Müşteri Hizmetleri ile iletişime geçebilirsiniz.
  • Dynamic mass redistribution assay decodes differentiation of a neural progenitor stem cell. 22885730

    Stem cells hold great potential in drug discovery and development. However, challenges remain to quantitatively measure the functions of stem cells and their differentiated products. Here, we applied fluorescent imaging, quantitative real-time PCR, and label-free dynamic mass redistribution (DMR) assays to characterize the differentiation process of the ReNcell VM human neural progenitor stem cell. Immunofluorescence imaging showed that after growth factor withdrawal, the neuroprogenitor stem cell was differentiated into dopaminergic neurons, astrocytes, and oligodendrocytes, thus creating a neuronal cell system. High-performance liquid chromatography analysis showed that the differentiated cell system released dopamine upon depolarization with KCl. In conjunction with quantitative real-time PCR, DMR assays using a G-protein-coupled receptor agonist library revealed that a subset of receptors, including dopamine D(1) and D(4) receptors, underwent marked alterations in both receptor expression and signaling pathway during the differentiation process. These findings suggest that DMR assays can decode the differentiation process of stem cells at the cell system level.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Small molecules induce efficient differentiation into insulin-producing cells from human induced pluripotent stem cells. 22056147

    Human induced pluripotent stem (hiPS) cells have potential uses for drug discovery and cell therapy, including generation of pancreatic β-cells for diabetes research and treatment. In this study, we developed a simple protocol for generating insulin-producing cells from hiPS cells. Treatment with activin A and a GSK3β inhibitor enhanced efficient endodermal differentiation, and then combined treatment with retinoic acid, a bone morphogenic protein inhibitor, and a transforming growth factor-β (TGF-β) inhibitor induced efficient differentiation of pancreatic progenitor cells from definitive endoderm. Expression of the pancreatic progenitor markers PDX1 and NGN3 was significantly increased at this step and most cells were positive for anti-PDX1 antibody. Moreover, several compounds, including forskolin, dexamethasone, and a TGF-β inhibitor, were found to induce the differentiation of insulin-producing cells from pancreatic progenitor cells. By combined treatment with these compounds, more than 10% of the cells became insulin positive. The differentiated cells secreted human c-peptide in response to various insulin secretagogues. In addition, all five hiPS cell lines that we examined showed efficient differentiation into insulin-producing cells with this protocol.Copyright © 2011 Elsevier B.V. All rights reserved.
    Document Type:
    Reference
    Product Catalog Number:
    07-633
  • A novel drug discovery strategy: mechanistic investigation of an enantiomeric antitumor agent targeting dual p53 and NF-κB pathways. 25350970

    The p53 and nuclear factor κB (NF-κB) pathways play crucial roles in human cancer development. Simultaneous targeting of both pathways is an attractive therapeutic strategy against cancer. In this study, we report an antitumor molecule that bears a pyrrolo[3,4-c]pyrazole scaffold and functions as an enantiomeric inhibitor against both the p53-MDM2 interaction and the NF-κB activation. It is a first-in-class enantiomeric inhibitor with dual efficacy for cancer therapy. Synergistic effect was observed in vitro and in vivo. Docking and molecular dynamics simulation studies further provided insights into the nature of stereoselectivity.
    Document Type:
    Reference
    Product Catalog Number:
    07-575
  • Class III beta-tubulin expression and in vitro resistance to microtubule targeting agents. 20029418

    BACKGROUND: Class III beta-tubulin overexpression is a marker of resistance to microtubule disruptors in vitro, in vivo and in the clinic for many cancers, including breast cancer. The aims of this study were to develop a new model of class III beta-tubulin expression, avoiding the toxicity associated with chronic overexpression of class III beta-tubulin, and study the efficacy of a panel of clinical and pre-clinical drugs in this model. METHODS: MCF-7 (ER+ve) and MDA-MB-231 (ER-ve) were either transfected with pALTER-TUBB3 or siRNA-tubb3 and 24 h later exposed to test compounds for a further 96 h for proliferation studies. RT-PCR and immunoblotting were used to monitor the changes in class III beta-tubulin mRNA and protein expression. RESULTS: The model allowed for subtle changes in class III beta-tubulin expression to be achieved, which had no direct effect on the viability of the cells. Class III beta-tubulin overexpression conferred resistance to paclitaxel and vinorelbine, whereas downregulation of class III beta-tubulin rendered cells more sensitive to these two drugs. The efficacy of the colchicine-site binding agents, 2-MeOE2, colchicine, STX140, ENMD1198 and STX243 was unaffected by the changes in class III beta-tubulin expression. CONCLUSION: These data indicate that the effect of class III beta-tubulin overexpression may depend on where the drug's binding site is located on the tubulin. Therefore, this study highlights for the first time the potential key role of targeting the colchicine-binding site, to develop new treatment modalities for taxane-refractory breast cancer.
    Document Type:
    Reference
    Product Catalog Number:
    MAB1637
    Product Catalog Name:
    Anti-Tubulin Antibody, beta III isoform, CT, clone TU-20 (Similar to TUJ1)
  • RKI-1447 is a potent inhibitor of the Rho-associated ROCK kinases with anti-invasive and antitumor activities in breast cancer. 22846914

    The Rho-associated kinases ROCK1 and ROCK2 are critical for cancer cell migration and invasion, suggesting they may be useful therapeutic targets. In this study, we describe the discovery and development of RKI-1447, a potent small molecule inhibitor of ROCK1 and ROCK2. Crystal structures of the RKI-1447/ROCK1 complex revealed that RKI-1447 is a Type I kinase inhibitor that binds the ATP binding site through interactions with the hinge region and the DFG motif. RKI-1447 suppressed phosphorylation of the ROCK substrates MLC-2 and MYPT-1 in human cancer cells, but had no effect on the phosphorylation levels of the AKT, MEK, and S6 kinase at concentrations as high as 10 μmol/L. RKI-1447 was also highly selective at inhibiting ROCK-mediated cytoskeleton re-organization (actin stress fiber formation) following LPA stimulation, but does not affect PAK-meditated lamellipodia and filopodia formation following PDGF and Bradykinin stimulation, respectively. RKI-1447 inhibited migration, invasion and anchorage-independent tumor growth of breast cancer cells. In contrast, RKI-1313, a much weaker analog in vitro, had little effect on the phosphorylation levels of ROCK substrates, migration, invasion or anchorage-independent growth. Finally, RKI-1447 was highly effective at inhibiting the outgrowth of mammary tumors in a transgenic mouse model. In summary, our findings establish RKI-1447 as a potent and selective ROCK inhibitor with significant anti-invasive and antitumor activities and offer a preclinical proof-of-concept that justify further examination of RKI-1447 suitability as a potential clinical candidate.
    Document Type:
    Reference
    Product Catalog Number:
    ABS45
    Product Catalog Name:
    Anti-phospho-MYPT1 (Thr696) Antibody
  • Aranorosin and a novel derivative inhibit the anti-apoptotic functions regulated by Bcl-2. 18977202

    Bcl-2 is an intracellular membrane protein that prevents cells from undergoing apoptosis in response to various cell-death signals. It negatively regulates mitochondrial outer membrane permeabilization, which is responsible for the release of apoptogenic factors and the subsequent activation of caspases. A microbial metabolite, aranorosin, was identified as an inhibitor of the anti-apoptotic function of Bcl-2. Based on its structure, a more potent derivative, K050, was synthesized. Apoptosis could be induced in a cell line that overexpressed Bcl-2 when cells were treated with an anti-Fas antibody in addition to K050, at sub-micromolar concentrations. Furthermore, K050 inhibited anti-apoptotic functions regulated by Bcl-2, resulting in a Fas-triggered mitochondrial transmembrane potential loss, the activation of caspase-9, and a morphological change to apoptosis. Inhibition of cell-based function of Bcl-2 and its anti-apoptotic effects could serve as useful pharmacological effects. Thus, a novel aranorosin derivative, K050, could be a potent therapeutic agent against Bcl-2-overexpressing human malignancies.
    Document Type:
    Reference
    Product Catalog Number:
    06-775
  • Mutation of tyrosine 470 of human dopamine transporter is critical for HIV-1 Tat-induced inhibition of dopamine transport and transporter conformational transitions. 23645138

    HIV-1 Tat protein plays a crucial role in perturbations of the dopamine (DA) system. Our previous studies have demonstrated that Tat decreases DA uptake, and allosterically modulates DA transporter (DAT) function. In the present study, we have found that Tat interacts directly with DAT, leading to inhibition of DAT function. Through computational modeling and simulations, a potential recognition binding site of human DAT (hDAT) for Tat was predicted. Mutation of tyrosine470 (Y470H) attenuated Tat-induced inhibition of DA transport, implicating the functional relevance of this residue for Tat binding to hDAT. Y470H reduced the maximal velocity of [³H]DA uptake without changes in the K(m) and IC₅₀ values for DA inhibition of DA uptake but increased DA uptake potency for cocaine and GBR12909, suggesting that this residue does not overlap with the binding sites in hDAT for substrate but is critical for these inhibitors. Furthermore, Y470H also led to transporter conformational transitions by affecting zinc modulation of DA uptake and WIN35,428 binding as well as enhancing basal DA efflux. Collectively, these findings demonstrate Tyr470 as a functional recognition residue in hDAT for Tat-induced inhibition of DA transport and transporter conformational transitions. The consequence of mutation at this residue is to block the functional binding of Tat to hDAT without affecting physiological DA transport.
    Document Type:
    Reference
    Product Catalog Number:
    MAB369
    Product Catalog Name:
    Anti-Dopamine Transporter Antibody, NT, clone DAT-Nt
  • rKv1. 2 overexpression in the central medial thalamic area decreases caffeine-induced arousal. 21762462

    The voltage-gated potassium channel Kv1.2 belongs to the shaker-related family and has recently been implicated in the control of sleep profile on the basis of clinical and experimental evidence in rodents. To further investigate whether increasing Kv1.2 activity would promote sleep occurrence in rats, we developed an adeno-associated viral vector that induces overexpression of rat Kv1.2 protein. The viral vector was first evaluated in vitro for its ability to overexpress rat Kv1.2 protein and to produce functional currents in infected U2OS cells. Next, the adeno-associated Kv1.2 vector was injected stereotaxically into the central medial thalamic area of rats and overexpression of Kv1.2 was showed by in situ hybridization, ex vivo electrophysiology and immunohistochemistry. Finally, the functional effect of Kv1.2 overexpression on sleep facilitation was investigated using telemetry system under normal conditions and following administration of the arousing agent caffeine, during the light phase. While no differences in sleep profile were observed between the control and the treated animals under normal conditions, a decrease in the pro-arousal effect of caffeine was seen only in the animals injected with the adeno-associated virus-Kv1.2 vector. Overall, our data further support a role of the Kv1.2 channel in the control of sleep profile, particularly under conditions of sleep disturbance.© 2011 The Authors. Genes, Brain and Behavior © 2011 Blackwell Publishing Ltd and International Behavioural and Neural Genetics Society.
    Document Type:
    Reference
    Product Catalog Number:
    MAB3580
    Product Catalog Name:
    Anti-Green Fluorescent Protein Antibody