Millipore Sigma Vibrant Logo
 

cd+apc


23 Results Gelişmiş Arama  
Showing
Aradığınızı Bulamadınız mı?
Müşteri Hizmetleri ile
İletişime Geçin

 
MilliporeSigma Documents

Doküman ararken yardıma ihtiyacınız var mı?

  • Analiz sertifikaları, Kalite Sertifikaları veya Güvenlik Bilgi Formlarını aramak için Doküman Arayıcı’yı kullanmayı deneyin.
     
  • Kullanım Kılavuzlarına erişmek için yardıma ihtiyacınız olur ise Müşteri Hizmetleri ile iletişime geçebilirsiniz.
  • «
  • <
  • 1
  • >
  • »
  • Expression and localization of membrane-type-1 matrix metalloproteinase, CD 44, and laminin-5gamma2 chain during colorectal carcinoma tumor progression. 15517370

    Membrane-type-1 matrix metalloproteinase (MT1-MMP) is overexpressed in many malignant tumor tissues and would be involved in tumor-cell migration. Using dual immunofluorescence of frozen sections, this study examined the expression and localization of MT1-MMP and its interacting molecules, CD44 and laminin-5gamma2 chain (LN-5gamma2) monomer, in 48 cases of colorectal tumors. Recent studies have shown that MT1-MMP, CD44 and LN-5gamma2 are direct downstream targets in the adenomatosis polyposis coli (APC)/beta-catenin (Wnt)-signaling pathway, which is upregulated in most colorectal epithelial tumors. MT1-MMP overexpression was observed in adenocarcinoma cases with moderate and/or less differentiation coinciding with CD44 downmodulation. Recent observations indicate that MT1-MMP overexpression disrupts tubulogenesis of MDCK cells in type-I collagen-rich tissues. Therefore, MT1-MMP overexpression might involve disturbances of neoplastic glandular structures during colorectal adenocarcinoma tumor progression. Intensity distribution analyses of images with dual immunofluorescence indicated that overexpressed MT1-MMP is closely associated with the enhanced expression of the LN-5gamma2 monomers at the invasive front of dedifferentiated tumor cells. Additionally, the graded expression of nuclear active beta-catenin was found in moderately differentiated and dedifferentiated areas of adenocarcinomas, where MT1-MMP overexpression was observed. Therefore, this study reveals that MT1-MMP might be a major effector of Wnt signaling in the late stage of colorectal carcinoma tumor progression.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Control of Emi2 activity and stability through Mos-mediated recruitment of PP2A. 17881560

    Before fertilization, vertebrate eggs are arrested in meiosis II by cytostatic factor (CSF), which holds the anaphase-promoting complex (APC) in an inactive state. It was recently reported that Mos, an integral component of CSF, acts in part by promoting the Rsk-mediated phosphorylation of the APC inhibitor Emi2/Erp1. We report here that Rsk phosphorylation of Emi2 promotes its interaction with the protein phosphatase PP2A. Emi2 residues adjacent to the Rsk phosphorylation site were important for PP2A binding. An Emi2 mutant that retained Rsk phosphorylation but lacked PP2A binding could not be modulated by Mos. PP2A bound to Emi2 acted on two distinct clusters of sites phosphorylated by Cdc2, one responsible for modulating its stability during CSF arrest and one that controls binding to the APC. These findings provide a molecular mechanism for Mos action in promoting CSF arrest and also define an unusual mechanism, whereby protein phosphorylation recruits a phosphatase for dephosphorylation of distinct sites phosphorylated by another kinase.
    Document Type:
    Reference
    Product Catalog Number:
    05-421
    Product Catalog Name:
    Anti-PP2A Antibody, C subunit, clone 1D6
  • In Vivo Consequences of Disrupting SH3-Mediated Interactions of the Inducible T-Cell Kinase. 22649724

    ITK-SH3-mediated interactions, both with exogenous ligands and via intermolecular self-association with ITK-SH2, have been shown to be important for regulation of ITK activity. The biological significance of these competing SH3 interactions is not completely understood. A mutant of ITK where substitution of the SH3 domain with that of the related kinase BTK (ITK-BTK((SH3))) was used to disrupt intermolecular self-association of ITK while maintaining canonical binding to exogenous ligands such as SLP-76. ITK-BTK((SH3)) displays reduced association with SLP-76 leading to inefficient transphosphorylation, reduced phosphorylation of PLCγ1, and diminished Th(2) cytokine production. In contrast, ITK-BTK((SH3)) displays no defect in its localization to the T-cell-APC contact site. Another mutation, Y511F, in the activation loop of ITK, impairs ITK activation. T cells expressing ITK-Y511F display defective phosphorylation of ITK and its downstream target PLCγ1, as well as significant inhibition of Th(2) cytokines. In contrast, the inducible localization of ITK-Y511F to the T cell-APC contact site and its association with SLP-76 are not affected. The presented data lend further support to the hypothesis that precise interactions between ITK and its signaling partners are required to support ITK signaling downstream of the TCR.
    Document Type:
    Reference
    Product Catalog Number:
    06-546
  • A conserved motif in the ITK PH-domain is required for phosphoinositide binding and TCR signaling but dispensable for adaptor protein interactions. 23028816

    Binding of the membrane phospholipid phosphatidylinositol 3,4,5-trisphosphate (PIP(3)) to the Pleckstrin Homology (PH) domain of the Tec family protein tyrosine kinase, Inducible T cell Kinase (ITK), is critical for the recruitment of the kinase to the plasma membrane and its co-localization with the TCR-CD3 molecular complex. Three aromatic residues, termed the FYF motif, located in the inner walls of the phospholipid-binding pocket of the ITK PH domain, are conserved in the PH domains of all Tec kinases, but not in other PH-domain containing proteins, suggesting an important function of the FYF motif in the Tec kinase family. However, the biological significance of the FYF amino acid motif in the ITK-PH domain is unknown. To elucidate it, we have tested the effects of a FYF triple mutant (F26S, Y90F, F92S), henceforth termed FYF-ITK mutant, on ITK function. We found that FYF triple mutation inhibits the TCR-induced production of IL-4 by impairing ITK binding to PIP(3), reducing ITK membrane recruitment, inducing conformational changes at the T cell-APC contact site, and compromising phosphorylation of ITK and subsequent phosphorylation of PLCγ(1). Interestingly, however, the FYF motif is dispensable for the interaction of ITK with two of its signaling partners, SLP-76 and LAT. Thus, the FYF mutation uncouples PIP(3)-mediated ITK membrane recruitment from the interactions of the kinase with key components of the TCR signalosome and abrogates ITK function in T cells.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • «
  • <
  • 1
  • >
  • »