Millipore Sigma Vibrant Logo
 

1314-13-2


1353 Results Gelişmiş Arama  
Showing

Sonuçlarınızı Daraltın Use the filters below to refine your search

Aradığınızı Bulamadınız mı?
Müşteri Hizmetleri ile
İletişime Geçin

 
MilliporeSigma Documents

Doküman ararken yardıma ihtiyacınız var mı?

  • Analiz sertifikaları, Kalite Sertifikaları veya Güvenlik Bilgi Formlarını aramak için Doküman Arayıcı’yı kullanmayı deneyin.
     
  • Kullanım Kılavuzlarına erişmek için yardıma ihtiyacınız olur ise Müşteri Hizmetleri ile iletişime geçebilirsiniz.
  • Glutamate- and GABA-mediated neuron-satellite cell interaction in nodose ganglia as revealed by intracellular calcium imaging. 20505950

    In the sensory ganglia, neurons are devoid of synaptic contacts, and ganglion neurons surrounded by one of glial cells, satellite cells. Recent studies suggest that neurons and satellite cells interact through neurotransmitters. In the present study, intracellular Ca(2+) ([Ca(2+)](i)) dynamics of neurons and satellite cells from one of viscerosensory ganglia, nodose ganglion (NG), were investigated by stimulation with glutamate and its agonist and/or the antagonist of the GABA(A) receptor bicuculline. In the specimens containing neurons with satellite cells, glutamate and a metabotropic glutamate receptor (mGluR) agonist t-ACPD evoked [Ca(2+)](i) increases in both neurons and surrounding satellite cells. Moreover, bicuculline also induced [Ca(2+)](i) increases in neurons and satellite cells. However, in the isolated neurons, bicuculline did not cause an increase in [Ca(2+)](i), suggesting that satellite cells are equipped with the ability to release GABA. In the neurons associated with satellite cells, the delay time until the onset of a response was shorter in the case of glutamate stimulation with bicuculline than that without bicuculline (107.3 +/- 93.4 vs. 231.8 +/- 97.0 s, p < 0.01). Furthermore, immunoreactivities for glutamate transporter, GLAST, and GABA transporter, GAT-3, were observed in both neurons and satellite cells of NG. In conclusion, the levels of [Ca(2+)](i) of NG neurons and surrounding satellite cells are increased by glutamate through at least mGluRs, and endogenous GABA modulates these responses; GABA inhibition is dependent on a close association between neurons and satellite cells. Such neuron-glia interaction in the nodose ganglion may regulate sensory information from visceral organs.
    Document Type:
    Reference
    Product Catalog Number:
    AB1574
  • Deletion of p47phox attenuates angiotensin II-induced abdominal aortic aneurysm formation in apolipoprotein E-deficient mice. 16864727

    Angiotensin II (Ang II) contributes to vascular pathology in part by stimulating NADPH oxidase activity, leading to increased formation of superoxide (O2-). We reported that O2- levels, NADPH oxidase activity, and expression of the p47phox subunit of NADPH oxidase are increased in human abdominal aortic aneurysms (AAAs). Here, we tested the hypothesis that deletion of p47phox will attenuate oxidative stress and AAA formation in Ang II-infused apoE-/- mice.Male apoE-/- and apoE-/-p47phox-/- mice received saline or Ang II (1000 ng x kg(-1) x min(-1)) infusion for 28 days, after which abdominal aortic weight and maximal diameter were determined. Aortic tissues and blood were examined for parameters of aneurysmal disease and oxidative stress. Ang II infusion induced AAAs in 90% of apoE-/- versus 16% of apo-/-p47phox-/- mice (P less than 0.05). Abdominal aortic weight (14.1 +/- 3.2 versus 35.6 +/- 9.0 mg), maximal aortic diameter (1.5 +/- 0.2 versus 2.4 +/- 0.4 mm), aortic NADPH oxidase activity, and parameters of oxidative stress were reduced in apoE-/-p47phox-/- mice compared with apoE-/- mice (P less than 0.05). In addition, aortic macrophage infiltration and matrix metalloproteinase-2 activity were reduced in apoE-/-p47phox-/- mice compared with apoE-/- mice. Deletion of p47phox attenuated the pressor response to Ang II; however, coinfusion of phenylephrine with Ang II, which restored the Ang II pressor response, did not alter the protective effects of p47phox deletion on AAA formation.Deletion of p47phox attenuates Ang II-induced AAA formation in apoE-/- mice, suggesting that NADPH oxidase plays a critical role in AAA formation in this model.
    Document Type:
    Reference
    Product Catalog Number:
    06-284
    Product Catalog Name:
    Anti-Nitrotyrosine Antibody
  • Beta-secretase protein and activity are increased in the neocortex in Alzheimer disease. 12223024

    Amyloid plaques, a major pathological feature of Alzheimer disease (AD), are composed of an internal fragment of amyloid precursor protein (APP): the 4-kd amyloid-beta protein (Abeta). The metabolic processing of APP that results in Abeta formation requires 2 enzymatic cleavage events, a gamma-secretase cleavage dependent on presenilin, and a beta-secretase cleavage by the aspartyl protease beta-site APP-cleaving enzyme (BACE).To test the hypothesis that BACE protein and activity are increased in regions of the brain that develop amyloid plaques in AD.We developed an antibody capture system to measure BACE protein level and BACE-specific beta-secretase activity in frontal, temporal, and cerebellar brain homogenates from 61 brains with AD and 33 control brains.In the brains with AD, BACE activity and protein were significantly increased (P<.001). Enzymatic activity increased by 63% in the temporal neocortex (P =.007) and 13% in the frontal neocortex (P =.003) in brains with AD, but not in the cerebellar cortex. Activity in the temporal neocortex increased with the duration of AD (P =.008) but did not correlate with enzyme-linked immunosorbent assay measures of insoluble Abeta in brains with AD. Protein level was increased by 14% in the frontal cortex of brains with AD (P =.004), with a trend toward a 15% increase in BACE protein in the temporal cortex (P =.07) and no difference in the cerebellar cortex. Immunohistochemical analysis demonstrated that BACE immunoreactivity in the brain was predominantly neuronal and was found in tangle-bearing neurons in AD.The BACE protein and activity levels are increased in brain regions affected by amyloid deposition and remain increased despite significant neuronal and synaptic loss in AD.
    Document Type:
    Reference
    Product Catalog Number:
    MAB329-C
    Product Catalog Name:
    Anti-Synaptophysin Antibody, clone SP15 (Ascites Free)