Millipore Sigma Vibrant Logo
 

+ +www.29.gs


3 Results Gelişmiş Arama  
Showing
Products (0)
Dokümanlar (3)
Site Content (0)
Aradığınızı Bulamadınız mı?
Müşteri Hizmetleri ile
İletişime Geçin

 
MilliporeSigma Documents

Doküman ararken yardıma ihtiyacınız var mı?

  • Analiz sertifikaları, Kalite Sertifikaları veya Güvenlik Bilgi Formlarını aramak için Doküman Arayıcı’yı kullanmayı deneyin.
     
  • Kullanım Kılavuzlarına erişmek için yardıma ihtiyacınız olur ise Müşteri Hizmetleri ile iletişime geçebilirsiniz.
  • «
  • <
  • 1
  • >
  • »
  • Molecular cloaking of H2A.Z on mortal DNA chromosomes during nonrandom segregation. 21905168

    Although nonrandom sister chromatid segregation is a singular property of distributed stem cells (DSCs) that are responsible for renewing and repairing mature vertebrate tissues, both its cellular function and its molecular mechanism remain unknown. This situation persists in part because of the lack of facile methods for detecting and quantifying nonrandom segregating cells and for identifying chromosomes with immortal DNA strands, the cellular molecules that signify nonrandom segregation. During nonrandom segregation, at each mitosis, asymmetrically self-renewing DSCs continuously cosegregate to themselves the set of chromosomes that contain immortal DNA strands, which are the oldest DNA strands. Here, we report the discovery of a molecular asymmetry between segregating sets of immortal chromosomes and opposed mortal chromosomes (i.e., containing the younger set of DNA template strands) that constitutes a new convenient biomarker for detection of cells undergoing nonrandom segregation and direct delineation of chromosomes that bear immortal DNA strands. In both cells engineered with DSC-specific properties and ex vivo-expanded mouse hair follicle stem cells, the histone H2A variant H2A.Z shows specific immunodetection on immortal DNA chromosomes. Cell fixation analyses indicate that H2A.Z is present on mortal chromosomes as well but is cloaked from immunodetection, and the cloaking entity is acid labile. The H2A.Z chromosomal asymmetry produced by molecular cloaking provides a first direct assay for nonrandom segregation and for chromosomes with immortal DNA strands. It also seems likely to manifest an important aspect of the underlying mechanism(s) responsible for nonrandom sister chromatid segregation in DSCs.
    Document Type:
    Reference
    Product Catalog Number:
    07-594
    Product Catalog Name:
    Anti-Histone H2A.Z Antibody
  • MEK-ERK Signaling Dictates DNA-Repair Gene MGMT Expression and Temozolomide Resistance of Stem-Like Glioblastoma Cells via the MDM2-p53 Axis. 21957016

    Overcoming the resistance of glioblastoma cells against temozolomide, the first-line chemotherapeutic agent of choice for newly diagnosed glioblastoma, is a major therapeutic challenge in the management of this deadly brain tumor. The gene encoding O(6) -methylguanine DNA methyltransferase (MGMT), which removes the methyl group attached by temozolomide, is often silenced by promoter methylation in glioblastoma but is nevertheless expressed in a significant fraction of cases and is therefore regarded as one of the most clinically relevant mechanisms of resistance against temozolomide. However, to date, signaling pathways regulating MGMT in MGMT-expressing glioblastoma cells have been poorly delineated. Here in this study, we provide lines of evidence that the mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK)-extracellular signal-regulated kinase (ERK)--murine double minute 2 (MDM2)-p53 pathway plays a critical role in the regulation of MGMT expression, using stem-like glioblastoma cells directly derived from patient tumor samples and maintained in the absence of serum, which not only possess stem-like properties but are also known to phenocopy the characteristics of the original tumors from which they are derived. We show that, in stem-like glioblastoma cells, MEK inhibition reduced MDM2 expression and that inhibition of either MEK or MDM2 resulted in p53 activation accompanied by p53-dependent downregulation of MGMT expression. MEK inhibition rendered otherwise resistant stem-like glioblastoma cells sensitive to temozolomide, and combination of MEK inhibitor and temozolomide treatments effectively deprived stem-like glioblastoma cells of their tumorigenic potential. Our findings suggest that targeting of the MEK-ERK-MDM2-p53 pathway in combination with temozolomide could be a novel and promising therapeutic strategy in the treatment of glioblastoma. STEM CELLS 2011;29:1942-1951.Copyright © 2011 AlphaMed Press.
    Document Type:
    Reference
    Product Catalog Number:
    AB5922
  • TAp63 is important for cardiac differentiation of embryonic stem cells and heart development. 21898690

    p63, a member of the p53 family, is essential for skin morphogenesis and epithelial stem cell maintenance. Here, we report an unexpected role of TAp63 in cardiogenesis. p63 null mice exhibit severe defects in embryonic cardiac development, including dilation of both ventricles, a defect in trabeculation and abnormal septation. This was accompanied by myofibrillar disarray, mitochondrial disorganization, and reduction in spontaneous calcium spikes. By the use of embryonic stem cells (ESCs), we show that TAp63 deficiency prevents expression of pivotal cardiac genes and production of cardiomyocytes. TAp63 is expressed by endodermal cells. Coculture of p63-knockdown ESCs with wild-type ESCs, supplementation with Activin A, or overexpression of GATA-6 rescue cardiogenesis. Therefore, TAp63 acts in a non-cell-autonomous manner by modulating expression of endodermal factors. Our findings uncover a critical role for p63 in cardiogenesis that could be related to human heart disease.
    Document Type:
    Reference
    Product Catalog Number:
    09-038
  • «
  • <
  • 1
  • >
  • »