Derivation of induced pluripotent stem cells from orangutan skin fibroblasts. Ramaswamy, K; Yik, WY; Wang, XM; Oliphant, EN; Lu, W; Shibata, D; Ryder, OA; Hacia, JG BMC research notes
8
577
2015
Show Abstract
Orangutans are an endangered species whose natural habitats are restricted to the Southeast Asian islands of Borneo and Sumatra. Along with the African great apes, orangutans are among the closest living relatives to humans. For potential species conservation and functional genomics studies, we derived induced pluripotent stem cells (iPSCs) from cryopreserved somatic cells obtained from captive orangutans.Primary skin fibroblasts from two Sumatran orangutans were transduced with retroviral vectors expressing the human OCT4, SOX2, KLF4, and c-MYC factors. Candidate orangutan iPSCs were characterized by global gene expression and DNA copy number analysis. All were consistent with pluripotency and provided no evidence of large genomic insertions or deletions. In addition, orangutan iPSCs were capable of producing cells derived from all three germ layers in vitro through embryoid body differentiation assays and in vivo through teratoma formation in immune-compromised mice.We demonstrate that orangutan skin fibroblasts are capable of being reprogrammed into iPSCs with hallmark molecular signatures and differentiation potential. We suggest that reprogramming orangutan somatic cells in genome resource banks could provide new opportunities for advancing assisted reproductive technologies relevant for species conservation efforts. Furthermore, orangutan iPSCs could have applications for investigating the phenotypic relevance of genomic changes that occurred in the human, African great ape, and/or orangutan lineages. This provides opportunities for orangutan cell culture models that would otherwise be impossible to develop from living donors due to the invasive nature of the procedures required for obtaining primary cells. | | | 26475477
 |
Transcription activator-like effector nuclease (TALEN)-mediated CLYBL targeting enables enhanced transgene expression and one-step generation of dual reporter human induced pluripotent stem cell (iPSC) and neural stem cell (NSC) lines. Cerbini, T; Funahashi, R; Luo, Y; Liu, C; Park, K; Rao, M; Malik, N; Zou, J PloS one
10
e0116032
2015
Show Abstract
Targeted genome engineering to robustly express transgenes is an essential methodology for stem cell-based research and therapy. Although designer nucleases have been used to drastically enhance gene editing efficiency, targeted addition and stable expression of transgenes to date is limited at single gene/locus and mostly PPP1R12C/AAVS1 in human stem cells. Here we constructed transcription activator-like effector nucleases (TALENs) targeting the safe-harbor like gene CLYBL to mediate reporter gene integration at 38%-58% efficiency, and used both AAVS1-TALENs and CLYBL-TALENs to simultaneously knock-in multiple reporter genes at dual safe-harbor loci in human induced pluripotent stem cells (iPSCs) and neural stem cells (NSCs). The CLYBL-TALEN engineered cell lines maintained robust reporter expression during self-renewal and differentiation, and revealed that CLYBL targeting resulted in stronger transgene expression and less perturbation on local gene expression than PPP1R12C/AAVS1. TALEN-mediated CLYBL engineering provides improved transgene expression and options for multiple genetic modification in human stem cells. | | | 25587899
 |
A facile method to establish human induced pluripotent stem cells from adult blood cells under feeder-free and xeno-free culture conditions: a clinically compliant approach. Chou, BK; Gu, H; Gao, Y; Dowey, SN; Wang, Y; Shi, J; Li, Y; Ye, Z; Cheng, T; Cheng, L Stem cells translational medicine
4
320-32
2015
Show Abstract
Reprogramming human adult blood mononuclear cells (MNCs) cells by transient plasmid expression is becoming increasingly popular as an attractive method for generating induced pluripotent stem (iPS) cells without the genomic alteration caused by genome-inserting vectors. However, its efficiency is relatively low with adult MNCs compared with cord blood MNCs and other fetal cells and is highly variable among different adult individuals. We report highly efficient iPS cell derivation under clinically compliant conditions via three major improvements. First, we revised a combination of three EBNA1/OriP episomal vectors expressing five transgenes, which increased reprogramming efficiency by ≥10-50-fold from our previous vectors. Second, human recombinant vitronectin proteins were used as cell culture substrates, alleviating the need for feeder cells or animal-sourced proteins. Finally, we eliminated the previously critical step of manually picking individual iPS cell clones by pooling newly emerged iPS cell colonies. Pooled cultures were then purified based on the presence of the TRA-1-60 pluripotency surface antigen, resulting in the ability to rapidly expand iPS cells for subsequent applications. These new improvements permit a consistent and reliable method to generate human iPS cells with minimal clonal variations from blood MNCs, including previously difficult samples such as those from patients with paroxysmal nocturnal hemoglobinuria. In addition, this method of efficiently generating iPS cells under feeder-free and xeno-free conditions allows for the establishment of clinically compliant iPS cell lines for future therapeutic applications. | | | 25742692
 |
Impaired respiratory function in MELAS-induced pluripotent stem cells with high heteroplasmy levels. Kodaira, M; Hatakeyama, H; Yuasa, S; Seki, T; Egashira, T; Tohyama, S; Kuroda, Y; Tanaka, A; Okata, S; Hashimoto, H; Kusumoto, D; Kunitomi, A; Takei, M; Kashimura, S; Suzuki, T; Yozu, G; Shimojima, M; Motoda, C; Hayashiji, N; Saito, Y; Goto, Y; Fukuda, K FEBS open bio
5
219-25
2015
Show Abstract
Mitochondrial diseases are heterogeneous disorders, caused by mitochondrial dysfunction. Mitochondria are not regulated solely by nuclear genomic DNA but by mitochondrial DNA. It is difficult to develop effective therapies for mitochondrial disease because of the lack of mitochondrial disease models. Mitochondrial myopathy, encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) is one of the major mitochondrial diseases. The aim of this study was to generate MELAS-specific induced pluripotent stem cells (iPSCs) and to demonstrate that MELAS-iPSCs can be models for mitochondrial disease. We successfully established iPSCs from the primary MELAS-fibroblasts carrying 77.7% of m.3243Agreater than G heteroplasmy. MELAS-iPSC lines ranged from 3.6% to 99.4% of m.3243Agreater than G heteroplasmy levels. The enzymatic activities of mitochondrial respiratory complexes indicated that MELAS-iPSC-derived fibroblasts with high heteroplasmy levels showed a deficiency of complex I activity but MELAS-iPSC-derived fibroblasts with low heteroplasmy levels showed normal complex I activity. Our data indicate that MELAS-iPSCs can be models for MELAS but we should carefully select MELAS-iPSCs with appropriate heteroplasmy levels and respiratory functions for mitochondrial disease modeling. | | | 25853038
 |
A method for human teratogen detection by geometrically confined cell differentiation and migration. Xing, J; Toh, YC; Xu, S; Yu, H Scientific reports
5
10038
2015
Show Abstract
Unintended exposure to teratogenic compounds can lead to various birth defects; however current animal-based testing is limited by time, cost and high inter-species variability. Here, we developed a human-relevant in vitro model, which recapitulated two cellular events characteristic of embryogenesis, to identify potentially teratogenic compounds. We spatially directed mesoendoderm differentiation, epithelial-mesenchymal transition and the ensuing cell migration in micropatterned human pluripotent stem cell (hPSC) colonies to collectively form an annular mesoendoderm pattern. Teratogens could disrupt the two cellular processes to alter the morphology of the mesoendoderm pattern. Image processing and statistical algorithms were developed to quantify and classify the compounds' teratogenic potential. We not only could measure dose-dependent effects but also correctly classify species-specific drug (Thalidomide) and false negative drug (D-penicillamine) in the conventional mouse embryonic stem cell test. This model offers a scalable screening platform to mitigate the risks of teratogen exposures in human. | | | 25966467
 |
An effective freezing/thawing method for human pluripotent stem cells cultured in chemically-defined and feeder-free conditions. Nishishita, N; Muramatsu, M; Kawamata, S American journal of stem cells
4
38-49
2015
Show Abstract
Culturing human Pluripotent Stem Cells (hPSC)s in chemically defined medium and feeder-free condition can facilitate metabolome and proteome analysis of culturing cells and medium, and reduce regulatory concerns for clinical application of cells. And in addition, if hPSC are passaged and cryopreserved in single cells it also facilitates quality control of cells at single cell level. Here we report a robust single cell freezing and thawing method of hPSCs cultured in chemically-defined medium TeSR(TM)-E8(TM) and on cost-effective recombinant human Vitronectin-N (rhVTN-N)-coated dish. Cells are dissociated into single cells with recombinant TrypLE(TM) Select and 0.5 mM EDTA/PBS (3:1 solution) in the presence of Rock inhibitor and cryopreserved with chemically defined CryoStem(TM). Approximately 60% of cells were viable after dissociation. Aggrewell(TM) 400 was used to form cell clumps of 500 cells after thaw in the presence of Rock inhibitor and cells were cultured for two days with TeSR-E8. Cells clumps were then seeded on rhVTN-N-coated dish and cultured with TeSR-E8 for two days prior to the first passage after thawing. Number of viable cells at the first passage increased around 10 times of that just before freezing. This robust single cell freezing method for hPSCs cultured in chemically defined medium will facilitate quality control of cultured cells at single cell level before cryopreservation and consequently assure the quality of cells in frozen vials for further manipulation after thawing. | | | 25973330
 |
Patient-specific naturally gene-reverted induced pluripotent stem cells in recessive dystrophic epidermolysis bullosa. Tolar, J; McGrath, JA; Xia, L; Riddle, MJ; Lees, CJ; Eide, C; Keene, DR; Liu, L; Osborn, MJ; Lund, TC; Blazar, BR; Wagner, JE The Journal of investigative dermatology
134
1246-54
2014
Show Abstract
Spontaneous reversion of disease-causing mutations has been observed in some genetic disorders. In our clinical observations of severe generalized recessive dystrophic epidermolysis bullosa (RDEB), a currently incurable blistering genodermatosis caused by loss-of-function mutations in COL7A1 that results in a deficit of type VII collagen (C7), we have observed patches of healthy-appearing skin on some individuals. When biopsied, this skin revealed somatic mosaicism resulting in the self-correction of C7 deficiency. We believe this source of cells could represent an opportunity for translational 'natural' gene therapy. We show that revertant RDEB keratinocytes expressing functional C7 can be reprogrammed into induced pluripotent stem cells (iPSCs) and that self-corrected RDEB iPSCs can be induced to differentiate into either epidermal or hematopoietic cell populations. Our results give proof-of-principle that an inexhaustible supply of functional patient-specific revertant cells can be obtained--potentially relevant to local wound therapy and systemic hematopoietic cell transplantation. This technology may also avoid some of the major limitations of other cell therapy strategies, e.g., immune rejection and insertional mutagenesis, which are associated with viral- and nonviral-mediated gene therapy. We believe this approach should be the starting point for autologous cellular therapies using 'natural' gene therapy in RDEB and other diseases. | | | 24317394
 |
Scalable passaging of adherent human pluripotent stem cells. Nie, Y; Walsh, P; Clarke, DL; Rowley, JA; Fellner, T PloS one
9
e88012
2014
Show Abstract
Current laboratory methods used to passage adherent human pluripotent stem cells (hPSCs) are labor intensive, result in reduced cell viability and are incompatible with larger scale production necessary for many clinical applications. To meet the current demand for hPSCs, we have developed a new non-enzymatic passaging method using sodium citrate. Sodium citrate, formulated as a hypertonic solution, gently and efficiently detaches adherent cultures of hPSCs as small multicellular aggregates with minimal manual intervention. These multicellular aggregates are easily and reproducibly recovered in calcium-containing medium, retain a high post-detachment cell viability of 97%±1% and readily attach to fresh substrates. Together, this significantly reduces the time required to expand hPSCs as high quality adherent cultures. Cells subcultured for 25 passages using this novel sodium citrate passaging solution exhibit characteristic hPSC morphology, high levels (greater than 80%) of pluripotency markers OCT4, SSEA-4, TRA-1-60 andTRA-1-81, a normal G-banded karyotype and the ability to differentiate into cells representing all three germ layers, both in vivo and in vitro. | | | 24498239
 |
Generation and characterization of leukemia inhibitory factor-dependent equine induced pluripotent stem cells from adult dermal fibroblasts. Whitworth, DJ; Ovchinnikov, DA; Sun, J; Fortuna, PR; Wolvetang, EJ Stem cells and development
23
1515-23
2014
Show Abstract
In this study we have reprogrammed dermal fibroblasts from an adult female horse into equine induced pluripotent stem cells (equiPSCs). These equiPSCs are dependent only on leukemia inhibitory factor (LIF), placing them in striking contrast to previously derived equiPSCs that have been shown to be co-dependent on both LIF and basic fibroblast growth factor (bFGF). These equiPSCs have a normal karyotype and have been maintained beyond 60 passages. They possess alkaline phosphatase activity and express eqNANOG, eqOCT4, and eqTERT mRNA. Immunocytochemistry confirmed that they produce NANOG, REX1, SSEA4, TRA1-60, and TRA1-81. While our equiPSCs are LIF dependent, bFGF co-stimulates their proliferation via the PI3K/AKT pathway. EquiPSCs lack expression of eqXIST and immunostaining for H3K27me3, suggesting that during reprogramming the inactive X chromosome has likely been reactivated to generate cells that have two active X chromosomes. EquiPSCs form embryoid bodies and in vitro teratomas that contain derivatives of all three germ layers. These LIF-dependent equiPSCs likely reflect a more naive state of pluripotency than equiPSCs that are co-dependent on both LIF and bFGF and so provide a novel resource for understanding pluripotency in the horse. | | | 24555755
 |
Cationic surface charge combined with either vitronectin or laminin dictates the evolution of human embryonic stem cells/microcarrier aggregates and cell growth in agitated cultures. Lam, AT; Li, J; Chen, AK; Reuveny, S; Oh, SK; Birch, WR Stem cells and development
23
1688-703
2014
Show Abstract
The expansion of human pluripotent stem cells (hPSC) for biomedical applications generally compels a defined, reliable, and scalable platform. Bioreactors offer a three-dimensional culture environment that relies on the implementation of microcarriers (MC), as supports for cell anchorage and their subsequent growth. Polystyrene microspheres/MC coated with adhesion-promoting extracellular matrix (ECM) protein, vitronectin (VN), or laminin (LN) have been shown to support hPSC expansion in a static environment. However, they are insufficient to promote human embryonic stem cells (hESC) seeding and their expansion in an agitated environment. The present study describes an innovative technology, consisting of a cationic charge that underlies the ECM coatings. By combining poly-L-lysine (PLL) with a coating of ECM protein, cell attachment efficiency and cell spreading are improved, thus enabling seeding under agitation in a serum-free medium. This coating combination also critically enables the subsequent formation and evolution of hPSC/MC aggregates, which ensure cell viability and generate high yields. Aggregate dimensions of at least 300 μm during early cell growth give rise to ≈15-fold expansion at 7 days' culture. Increasing aggregate numbers at a quasi-constant size of ≈300 μm indicates hESC growth within a self-regulating microenvironment. PLL+LN enables cell seeding and aggregate evolution under constant agitation, whereas PLL+VN requires an intermediate 2-day static pause to attain comparable aggregate sizes and correspondingly high expansion yields. The cells' highly reproducible bioresponse to these defined and characterized MC surface properties is universal across multiple cell lines, thus confirming the robustness of this scalable expansion process in a defined environment. | Fluorescence Activated Cell Sorting (FACS) | | 24641164
 |