Our broad portfolio consists of multiplex panels that allow you to choose, within the panel, analytes that best meet your needs. On a separate tab you can choose the premixed cytokine format or a single plex kit.
Cell Signaling Kits & MAPmates™
Choose fixed kits that allow you to explore entire pathways or processes. Or design your own kits by choosing single plex MAPmates™, following the provided guidelines.
The following MAPmates™ should not be plexed together: -MAPmates™ that require a different assay buffer -Phospho-specific and total MAPmate™ pairs, e.g. total GSK3β and GSK3β (Ser 9) -PanTyr and site-specific MAPmates™, e.g. Phospho-EGF Receptor and phospho-STAT1 (Tyr701) -More than 1 phospho-MAPmate™ for a single target (Akt, STAT3) -GAPDH and β-Tubulin cannot be plexed with kits or MAPmates™ containing panTyr
.
Catalogue Number
Ordering Description
Qty/Pack
List
This item has been added to favorites.
Select A Species, Panel Type, Kit or Sample Type
To begin designing your MILLIPLEX® MAP kit select a species, a panel type or kit of interest.
Custom Premix Selecting "Custom Premix" option means that all of the beads you have chosen will be premixed in manufacturing before the kit is sent to you.
Catalogue Number
Ordering Description
Qty/Pack
List
This item has been added to favorites.
Species
Panel Type
Selected Kit
Qty
Catalogue Number
Ordering Description
Qty/Pack
List Price
96-Well Plate
Qty
Catalogue Number
Ordering Description
Qty/Pack
List Price
Add Additional Reagents (Buffer and Detection Kit is required for use with MAPmates)
Qty
Catalogue Number
Ordering Description
Qty/Pack
List Price
48-602MAG
Buffer Detection Kit for Magnetic Beads
1 Kit
Space Saver Option Customers purchasing multiple kits may choose to save storage space by eliminating the kit packaging and receiving their multiplex assay components in plastic bags for more compact storage.
This item has been added to favorites.
The Product Has Been Added To Your Cart
You can now customize another kit, choose a premixed kit, check out or close the ordering tool.
This section provides an overview of membrane sealing methods and some points for device manufacturers to consider when designing a sealing process.
Heat Sealing
Heat is transferred through a die that is applied directly onto the materials being sealed. As the heat melts the substrate plastic, the pressure forces the softened plastic into the pore structure of the membrane and forms a bond between the materials. The sealing parameters of temperature, pressure, and dwell time must be optimized for each process and material combination.
Key Considerations:
Apply a low surface-energy coating to the heater head to minimize plastic build-up
A transparent seal area generally indicates a complete seal
Simple geometries such as a round seal area yield better results
Seal membranes to substrate materials with similar or lower melting points
A minimum seal width of 0.05 inches (1.25 mm) is recommended
Seal integrity can be tested using low air or water pressure in the reverse flow direction
Ultrasonic Welding
Ultrasonic welding is the joining of thermoplastics through the use of heat generated from high frequency mechanical motion or vibrations. The vibrations are created in a vertical direction; the heat is generated from the repeated collision of the materials.
Key Considerations:
Use a welder with high frequency and low amplitude (40 kHz) to reduce damage to delicate materials such as membranes
Avoid excess vibration
Proper horn, nest, and part design are crucial to achieve a good seal
Use energy directors to reduce the required weld energy
Cutting and sealing can occur with one pass of the welder
RF Welding
Radio frequency (RF) welding uses electromagnetic waves to excite molecules and generate internal heat in plastics. The heat, combined with pressure, bonds materials together. Only certain materials, such as PVC and acrylic, have the correct dielectric properties to allow RF welding to work.
For best results, seal the membrane between two plastic housings.