Nerve agent hydrolysis activity designed into a human drug metabolism enzyme. Hemmert, Andrew C, et al. PLoS ONE, 6: e17441 (2011)
2010
Show Abstract
Organophosphorus (OP) nerve agents are potent suicide inhibitors of the essential neurotransmitter-regulating enzyme acetylcholinesterase. Due to their acute toxicity, there is significant interest in developing effective countermeasures to OP poisoning. Here we impart nerve agent hydrolysis activity into the human drug metabolism enzyme carboxylesterase 1. Using crystal structures of the target enzyme in complex with nerve agent as a guide, a pair of histidine and glutamic acid residues were designed proximal to the enzyme's native catalytic triad. The resultant variant protein demonstrated significantly increased rates of reactivation following exposure to sarin, soman, and cyclosarin. Importantly, the addition of these residues did not alter the high affinity binding of nerve agents to this protein. Thus, using two amino acid substitutions, a novel enzyme was created that efficiently converted a group of hemisubstrates, compounds that can start but not complete a reaction cycle, into bona fide substrates. Such approaches may lead to novel countermeasures for nerve agent poisoning. | 21445272
|
An improved human carboxylesterase for enzyme/prodrug therapy with CPT-11. Wierdl, M, et al. Cancer Gene Ther., 15: 183-92 (2008)
2008
Show Abstract
CPT-11 is a potent antitumor agent that is activated by carboxylesterases (CE) and intracellular expression of CEs that can activate the drug results in increased cytotoxicity to the drug. As activation of CPT-11 (irinotecan-7-ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxycamptothecin) by human CEs is relatively inefficient, we have developed enzyme/prodrug therapy approaches based on the CE/CPT-11 combination using a rabbit liver CE (rCE). However, the in vivo application of this technology may be hampered by the development of an immune response to rCE. Therefore, we have developed a mutant human CE (hCE1m6), based on the human liver CE hCE1, that can activate CPT-11 approximately 70-fold more efficiently than the wild-type protein and can be expressed at high levels in mammalian cells. Indeed, adenoviral-mediated delivery of hCE1m6 with human tumor cells resulted in up to a 670-fold reduction in the IC(50) value for CPT-11, as compared to cells transduced with vector control virus. Furthermore, xenograft studies with human tumors expressing hCE1m6 confirm the ability of this enzyme to activate CPT-11 in vivo and induce antitumor activity. We propose that this enzyme should likely be less immunogenic than rCE and would be suitable for the in vivo application of CE/CPT-11 enzyme/prodrug therapy. | 18188187
|