Caveolin is necessary for Wnt-3a-dependent internalization of LRP6 and accumulation of beta-catenin. Yamamoto, H; Komekado, H; Kikuchi, A Developmental cell
11
213-23
2005
Show Abstract
beta-catenin-mediated Wnt signaling is critical in animal development and tumor progression. The single-span transmembrane Wnt receptor, low-density lipoprotein receptor-related protein 6 (LRP6), interacts with Axin to promote the Wnt-dependent accumulation of beta-catenin. However, the molecular mechanism of receptor internalization and its impact on signaling are unclear. Here, we present evidence that LRP6 is internalized with caveolin and that the components of this endocytic pathway are required not only for Wnt-3a-induced internalization of LRP6 but also for accumulation of beta-catenin. Overall, our data suggest that Wnt-3a triggers the interaction of LRP6 with caveolin and promotes recruitment of Axin to LRP6 phosphorylated by glycogen synthase kinase-3beta and that caveolin thereby inhibits the binding of beta-catenin to Axin. Thus, caveolin plays critical roles in inducing the internalization of LRP6 and activating the Wnt/beta-catenin pathway. We also discuss the idea that distinct endocytic pathways correlate with the specificity of Wnt signaling events. | 16890161
|
Wnt-3a and Dvl induce neurite retraction by activating Rho-associated kinase. Kishida, S; Yamamoto, H; Kikuchi, A Molecular and cellular biology
24
4487-501
2004
Show Abstract
Dvl is a key protein that transmits the Wnt signal to the canonical beta-catenin pathway and the noncanonical planar cell polarity (PCP) pathway. We studied the roles of Rho-associated kinase (Rho-kinase), which is activated by Dvl in the PCP pathway of mammalian cells. The expression of Dvl-1, Wnt-1, or Wnt-3a activated Rho-kinase in COS cells, and this activation was inhibited by the Rho-binding domain of Rho-kinase. The expression of Dvl-1 in PC12 cells activated Rho and inhibited nerve growth factor (NGF)-induced neurite outgrowth. This inhibition was reversed by a Rho-kinase inhibitor but not by a c-Jun N-terminal kinase inhibitor. Dvl-1 also inhibited serum starvation-dependent neurite outgrowth of N1E-115 cells, and expression of the Rho-binding domain of Rho-kinase reversed this inhibitory activity of Dvl-1. Dvl-1 mutants that did not activate Rho-kinase did not inhibit the neurite outgrowth of N1E-115 cells. Furthermore, the purified Wnt-3a protein activated Rho-kinase and inhibited the NGF-dependent neurite outgrowth of PC12 cells. Wnt-3a-dependent neurite retraction was also prevented by a Rho-kinase inhibitor and a Dvl-1 mutant that suppresses Wnt-3a-dependent activation of Rho-kinase. These results suggest that Wnt-3a and Dvl regulate neurite formation through Rho-kinase and that PC12 and N1E-115 cells are useful for analyzing the PCP pathway. | 15121866
|