Cowpox Virus Protein CPXV012 Eludes CTLs by Blocking ATP Binding to TAP. Luteijn, RD; Hoelen, H; Kruse, E; van Leeuwen, WF; Grootens, J; Horst, D; Koorengevel, M; Drijfhout, JW; Kremmer, E; Früh, K; Neefjes, JJ; Killian, A; Lebbink, RJ; Ressing, ME; Wiertz, EJ Journal of immunology (Baltimore, Md. : 1950)
193
1578-89
2014
Show Abstract
CD8(+) CTLs detect virus-infected cells through recognition of virus-derived peptides presented at the cell surface by MHC class I molecules. The cowpox virus protein CPXV012 deprives the endoplasmic reticulum (ER) lumen of peptides for loading onto newly synthesized MHC class I molecules by inhibiting the transporter associated with Ag processing (TAP). This evasion strategy allows the virus to avoid detection by the immune system. In this article, we show that CPXV012, a 9-kDa type II transmembrane protein, prevents peptide transport by inhibiting ATP binding to TAP. We identified a segment within the ER-luminal domain of CPXV012 that imposes the block in peptide transport by TAP. Biophysical studies show that this domain has a strong affinity for phospholipids that are also abundant in the ER membrane. We discuss these findings in an evolutionary context and show that a frameshift deletion in the CPXV012 gene in an ancestral cowpox virus created the current form of CPXV012 that is capable of inhibiting TAP. In conclusion, our findings indicate that the ER-luminal domain of CPXV012 inserts into the ER membrane, where it interacts with TAP. CPXV012 presumably induces a conformational arrest that precludes ATP binding to TAP and, thus, activity of TAP, thereby preventing the presentation of viral peptides to CTLs. | 25024387
|
Direct evidence that the N-terminal extensions of the TAP complex act as autonomous interaction scaffolds for the assembly of the MHC I peptide-loading complex. Hulpke, Sabine, et al. Cell. Mol. Life Sci., 69: 3317-27 (2012)
2011
Show Abstract
The loading of antigenic peptides onto major histocompatibility complex class I (MHC I) molecules is an essential step in the adaptive immune response against virally or malignantly transformed cells. The ER-resident peptide-loading complex (PLC) consists of the transporter associated with antigen processing (TAP1 and TAP2), assembled with the auxiliary factors tapasin and MHC I. Here, we demonstrated that the N-terminal extension of each TAP subunit represents an autonomous domain, named TMD(0), which is correctly targeted to and inserted into the ER membrane. In the absence of coreTAP, each TMD(0) recruits tapasin in a 1:1 stoichiometry. Although the TMD(0)s lack known ER retention/retrieval signals, they are localized to the ER membrane even in tapasin-deficient cells. We conclude that the TMD(0)s of TAP form autonomous interaction hubs linking antigen translocation into the ER with peptide loading onto MHC I, hence ensuring a major function in the integrity of the antigen-processing machinery. | 22638925
|
Molecular architecture of the MHC I peptide-loading complex: one tapasin molecule is essential and sufficient for antigen processing. Hulpke, Sabine, et al. FASEB J., 26: 5071-80 (2012)
2011
Show Abstract
The loading of antigen-derived peptides onto MHC class I molecules for presentation to cytotoxic T cells is a key process in adaptive immune defense. Loading of MHC I is achieved by a sophisticated machinery, the peptide-loading complex (PLC), which is organized around the transporter associated with antigen processing (TAP) with the help of several auxiliary proteins. As an essential adapter protein recruiting MHC I molecules to TAP, tapasin catalyzes peptide loading of MHC I. However, the exact stoichiometry and basic molecular architecture of TAP and tapasin within the PLC remains elusive. Here, we demonstrate that two tapasin molecules are assembled in the PLC, with one tapasin bound to each TAP subunit. However, one tapasin molecule bound either to TAP1 or TAP2 is sufficient for efficient MHC I antigen presentation. By specifically blocking the interaction between tapasin-MHC I complexes and the translocation complex TAP, the MHC I surface expression is impaired to the same extent as with soluble tapasin. Thus, the proximity of the peptide supplier TAP to the acceptor MHC I is crucial for antigen processing. In summary, the human PLC consists maximally of 2× tapasin-ERp57/MHC I per TAP complex, but one tapasin-ERp57/MHC I in the PLC is essential and sufficient for antigen processing. | 22923333
|
Modulation of the antigenic peptide transporter TAP by recombinant antibodies binding to the last five residues of TAP1. Plewnia, Gabriele, et al. J. Mol. Biol., 369: 95-107 (2007)
2007
Show Abstract
The transporter associated with antigen processing (TAP) plays a pivotal role in the major histocompatibility complex (MHC) class I mediated immune response against infected or malignantly transformed cells. It belongs to the ATP-binding cassette (ABC) superfamily and consists of TAP1 (ABCB2) and TAP2 (ABCB3), each of which possesses a transmembrane and a nucleotide-binding domain (NBD). Here we describe the generation of recombinant Fv and Fab antibody fragments to human TAP from a hybridoma cell line expressing the TAP1-specific monoclonal antibody mAb148.3. The epitope of the antibody was mapped to the very last five C-terminal amino acid residues of TAP1 on solid-supported peptide arrays. The recombinant antibody fragments were heterologously expressed in Escherichia coli and purified to homogeneity from periplasmic extracts by affinity chromatography. The monoclonal and recombinant antibodies bind with nanomolar affinity to the last five C-terminal amino acid residues of TAP1 as demonstrated by ELISA and surface plasmon resonance. Strikingly, the recombinant antibody fragments confer thermal stability to the heterodimeric TAP complex. At the same time TAP is arrested in a peptide transport incompetent conformation, although ATP and peptide binding to TAP are not affected. Based on our results we suggest that the C terminus of TAP1 modulates TAP function presumably as part of the dimer interface of the NBDs. | 17418234
|
Functional non-equivalence of ATP-binding cassette signature motifs in the transporter associated with antigen processing (TAP). Chen, Min, et al. J. Biol. Chem., 279: 46073-81 (2004)
2004
Show Abstract
The transporter associated with antigen processing (TAP) is a key component of the cellular immune system. As a member of the ATP-binding cassette (ABC) superfamily, TAP hydrolyzes ATP to energize the transport of peptides from the cytosol into the lumen of the endoplasmic reticulum. TAP is composed of TAP1 and TAP2, each containing a transmembrane domain and a nucleotide-binding domain (NBD). Here we investigated the role of the ABC signature motif (C-loop) on the functional non-equivalence of the NBDs, which contain a canonical C-loop (LSGGQ) for TAP1 and a degenerate C-loop (LAAGQ) for TAP2. Mutation of the leucine or glycine (LSGGQ) in TAP1 fully abolished peptide transport. However, TAP complexes with equivalent mutations in TAP2 still showed residual peptide transport activity. To elucidate the origin of the asymmetry of the NBDs of TAP, we further examined TAP complexes with exchanged C-loops. Strikingly, the chimera with two canonical C-loops showed the highest transport rate whereas the chimera with two degenerate C-loops had the lowest transport rate, demonstrating that the ABC signature motifs control peptide transport efficiency. All single site mutants and chimeras showed similar activities in peptide or ATP binding, implying that these mutations affect the ATPase activity of TAP. In addition, these results prove that the serine of the C-loop is not essential for TAP function but rather coordinates, together with other residues of the C-loop, the ATP hydrolysis in both nucleotide-binding sites. | 15322097
|
Functional expression and purification of the ABC transporter complex associated with antigen processing (TAP) in insect cells. Meyer, T H, et al. FEBS Lett., 351: 443-7 (1994)
1993
Show Abstract
Using the baculovirus expression system the gene products of human tap1 and tap2 were over-expressed as wild-type as well as oligohistidine fusion proteins in Spodoptera frugiperda (Sf9) insect cells. Both gene products were co-expressed within the same cells and were found enriched in microsomal membranes. Immunoprecipitation and immobilized metal affinity chromatography revealed complex formation between TAP1 and TAP2. The expressed TAP complex was shown to be functional by peptide translocation into microsomes of Sf9 cells. Peptide transport strictly requires TAP1 and TAP2 as well as ATP. For the first time the functional expression of the human TAP complex in insect cells has been demonstrated, indicating that additional cofactors of a highly developed immune system are not essential for peptide transport across microsomal membranes. | 8082812
|