Molecular chaperoning function of Ric-8 is to fold nascent heterotrimeric G protein α subunits. Chan, P; Thomas, CJ; Sprang, SR; Tall, GG Proceedings of the National Academy of Sciences of the United States of America
110
3794-9
2013
Show Abstract
We have shown that resistance to inhibitors of cholinesterase 8 (Ric-8) proteins regulate an early step of heterotrimeric G protein α (Gα) subunit biosynthesis. Here, mammalian and plant cell-free translation systems were used to study Ric-8A action during Gα subunit translation and protein folding. Gα translation rates and overall produced protein amounts were equivalent in mock and Ric-8A-immunodepleted rabbit reticulocyte lysate (RRL). GDP-AlF4(-)-bound Gαi, Gαq, Gα13, and Gαs produced in mock-depleted RRL had characteristic resistance to limited trypsinolysis, showing that these G proteins were folded properly. Gαi, Gαq, and Gα13, but not Gαs produced from Ric-8A-depleted RRL were not protected from trypsinization and therefore not folded correctly. Addition of recombinant Ric-8A to the Ric-8A-depleted RRL enhanced GDP-AlF4(-)-bound Gα subunit trypsin protection. Dramatic results were obtained in wheat germ extract (WGE) that has no endogenous Ric-8 component. WGE-translated Gαq was gel filtered and found to be an aggregate. Ric-8A supplementation of WGE allowed production of Gαq that gel filtered as a ∼100 kDa Ric-8A:Gαq heterodimer. Addition of GTPγS to Ric-8A-supplemented WGE Gαq translation resulted in dissociation of the Ric-8A:Gαq heterodimer and production of functional Gαq-GTPγS monomer. Excess Gβγ supplementation of WGE did not support functional Gαq production. The molecular chaperoning function of Ric-8 is to participate in the folding of nascent G protein α subunits. | 23431197
|
Ric-8 proteins are molecular chaperones that direct nascent G protein α subunit membrane association. Gabay, M; Pinter, ME; Wright, FA; Chan, P; Murphy, AJ; Valenzuela, DM; Yancopoulos, GD; Tall, GG Science signaling
4
ra79
2010
Show Abstract
Ric-8A (resistance to inhibitors of cholinesterase 8A) and Ric-8B are guanine nucleotide exchange factors that enhance different heterotrimeric guanine nucleotide-binding protein (G protein) signaling pathways by unknown mechanisms. Because transgenic disruption of Ric-8A or Ric-8B in mice caused early embryonic lethality, we derived viable Ric-8A- or Ric-8B-deleted embryonic stem (ES) cell lines from blastocysts of these mice. We observed pleiotropic G protein signaling defects in Ric-8A(-/-) ES cells, which resulted from reduced steady-state amounts of Gα(i), Gα(q), and Gα(13) proteins to <5% of those of wild-type cells. The amounts of Gα(s) and total Gβ protein were partially reduced in Ric-8A(-/-) cells compared to those in wild-type cells, and only the amount of Gα(s) was reduced substantially in Ric-8B(-/-) cells. The abundances of mRNAs encoding the G protein α subunits were largely unchanged by loss of Ric-8A or Ric-8B. The plasma membrane residence of G proteins persisted in the absence of Ric-8 but was markedly reduced compared to that in wild-type cells. Endogenous Gα(i) and Gα(q) were efficiently translated in Ric-8A(-/-) cells but integrated into endomembranes poorly; however, the reduced amounts of G protein α subunits that reached the membrane still bound to nascent Gβγ. Finally, Gα(i), Gα(q), and Gβ(1) proteins exhibited accelerated rates of degradation in Ric-8A(-/-) cells compared to those in wild-type cells. Together, these data suggest that Ric-8 proteins are molecular chaperones required for the initial association of nascent Gα subunits with cellular membranes. | 22114146
|