Tocopherols inhibit oxidative and nitrosative stress in estrogen-induced early mammary hyperplasia in ACI rats. Das Gupta, S; So, JY; Wall, B; Wahler, J; Smolarek, AK; Sae-Tan, S; Soewono, KY; Yu, H; Lee, MJ; Thomas, PE; Yang, CS; Suh, N Molecular carcinogenesis
54
916-25
2015
Show Abstract
Oxidative stress is known to play a key role in estrogen-induced breast cancer. This study assessed the chemopreventive activity of the naturally occurring γ-tocopherol-rich mixture of tocopherols (γ-TmT) in early stages of estrogen-induced mammary hyperplasia in ACI rats. ACI rats provide an established model of rodent mammary carcinogenesis due to their high sensitivity to estrogen. Female rats were implanted with 9 mg of 17β-estradiol (E2) in silastic tubings and fed with control or 0.3% γ-TmT diet for 1, 3, 7, and 14 d. γ-TmT increased the levels of tocopherols and their metabolites in the serum and mammary glands of the rats. Histological analysis revealed mammary hyperplasia in the E2 treated rats fed with control or γ-TmT diet. γ-TmT decreased the levels of E2-induced nitrosative and oxidative stress markers, nitrotyrosine, and 8-oxo-dG, respectively, in the hyperplastic mammary tissues. 8-Isoprostane, a marker of oxidative stress in the serum, was also reduced by γ-TmT. Noticeably, γ-TmT stimulated Nrf2-dependent antioxidant response in the mammary glands of E2 treated rats, evident from the induced mRNA levels of Nrf2 and its downstream antioxidant enzymes, superoxide dismutase, catalase, and glutathione peroxidase. Therefore, inhibition of nitrosative/oxidative stress through induction of antioxidant response is the primary effect of γ-TmT in early stages of E2-induced mammary hyperplasia. Due to its cytoprotective activity, γ-TmT could be a potential natural agent for the chemoprevention of estrogen-induced breast cancer. | | 24782330
|
Effect of sodium nitrite on ischaemia and reperfusion-induced arrhythmias in anaesthetized dogs: is protein S-nitrosylation involved? Kovács, M; Kiss, A; Gönczi, M; Miskolczi, G; Seprényi, G; Kaszaki, J; Kohr, MJ; Murphy, E; Végh, Á PloS one
10
e0122243
2015
Show Abstract
To provide evidence for the protective role of inorganic nitrite against acute ischaemia and reperfusion-induced ventricular arrhythmias in a large animal model.Dogs, anaesthetized with chloralose and urethane, were administered intravenously with sodium nitrite (0.2 µmol kg(-1) min(-1)) in two protocols. In protocol 1 nitrite was infused 10 min prior to and during a 25 min occlusion of the left anterior descending (LAD) coronary artery (NaNO2-PO; n = 14), whereas in protocol 2 the infusion was started 10 min prior to reperfusion of the occluded vessel (NaNO2-PR; n = 12). Control dogs (n = 15) were infused with saline and subjected to the same period of ischaemia and reperfusion. Severities of ischaemia and ventricular arrhythmias, as well as changes in plasma nitrate/nitrite (NOx) levels in the coronary sinus blood, were assessed throughout the experiment. Myocardial superoxide and nitrotyrosine (NT) levels were determined during reperfusion. Changes in protein S-nitrosylation (SNO) and S-glutathionylation were also examined.Compared with controls, sodium nitrite administered either pre-occlusion or pre-reperfusion markedly suppressed the number and severity of ventricular arrhythmias during occlusion and increased survival (0% vs. 50 and 92%) upon reperfusion. There were also significant decreases in superoxide and NT levels in the nitrite treated dogs. Compared with controls, increased SNO was found only in NaNO2-PR dogs, whereas S-glutathionylation occurred primarily in NaNO2-PO dogs.Intravenous infusion of nitrite profoundly reduced the severity of ventricular arrhythmias resulting from acute ischaemia and reperfusion in anaesthetized dogs. This effect, among several others, may result from an NO-mediated reduction in oxidative stress, perhaps through protein SNO and/or S-glutathionylation. | | 25909651
|
Targeting immune suppression with PDE5 inhibition in end-stage multiple myeloma. Noonan, KA; Ghosh, N; Rudraraju, L; Bui, M; Borrello, I Cancer immunology research
2
725-31
2014
Show Abstract
Myeloid-derived suppressor cells (MDSC) play a significant role in tumor-induced immune suppression. Targeting their function could improve antitumor therapies. Previously, we demonstrated that phosphodiesterase 5 (PDE5) inhibition in MDSCs augmented antitumor immunity in murine models. Here, we show how the addition of the PDE5 inhibitor, tadalafil, in a patient with end-stage relapsed/refractory multiple myeloma reduced MDSC function and generated a dramatic and durable antimyeloma immune and clinical response. Strategies targeting MDSC function with PDE5 inhibitors represent a novel approach that can augment the efficacy of tumor-directed therapies. | | 24878583
|
Electroacupuncture-like stimulation at the Baihui (GV20) and Dazhui (GV14) acupoints protects rats against subacute-phase cerebral ischemia-reperfusion injuries by reducing S100B-mediated neurotoxicity. Cheng, CY; Lin, JG; Tang, NY; Kao, ST; Hsieh, CL PloS one
9
e91426
2014
Show Abstract
The purpose of this study was to evaluate the effects of electroacupuncture-like stimulation at the Baihui (GV20) and Dazhui (GV14) acupoints (EA at acupoints) during the subacute phase of cerebral ischemia-reperfusion (I/R) injury and to establish the neuroprotective mechanisms involved in the modulation of the S100B-mediated signaling pathway.The experimental rats were subjected to middle cerebral artery occlusion (MCAo) for 15 min followed by 1 d or 7 d of reperfusion. EA at acupoints was applied 1 d postreperfusion then once daily for 6 consecutive days.We observed that 15 min of MCAo caused delayed infarct expansion 7 d after reperfusion. EA at acupoints significantly reduced the cerebral infarct and neurological deficit scores. EA at acupoints also downregulated the expression of the glial fibrillary acidic protein (GFAP), S100B, nuclear factor-κB (NF-κB; p50), and tumor necrosis factor-α (TNF-α), and reduced the level of inducible nitric oxide synthase (iNOS) and apoptosis in the ischemic cortical penumbra 7 d after reperfusion. Western blot analysis showed that EA at acupoints significantly downregulated the cytosolic expression of phospho-p38 MAP kinase (p-p38 MAP kinase), tumor necrosis factor receptor type 1-associated death domain (TRADD), Fas-associated death domain (FADD), cleaved caspase-8, and cleaved caspase-3 in the ischemic cortical penumbra 7 d after reperfusion. EA at acupoints significantly reduced the numbers of GFAP/S100B and S100B/nitrotyrosine double-labeled cells.Our study results indicate that EA at acupoints initiated 1 d postreperfusion effectively downregulates astrocytic S100B expression to provide neuroprotection against delayed infarct expansion by modulating p38 MAP kinase-mediated NF-κB expression. These effects subsequently reduce oxidative/nitrative stress and inhibit the TNF-α/TRADD/FADD/cleaved caspase-8/cleaved caspase-3 apoptotic pathway in the ischemic cortical penumbra 7 d after reperfusion. | | 24626220
|
Endothelial nitric oxide synthase and superoxide mediate hemodynamic initiation of intracranial aneurysms. Liaw, N; Fox, JM; Siddiqui, AH; Meng, H; Kolega, J PloS one
9
e101721
2014
Show Abstract
Hemodynamic insults at arterial bifurcations are believed to play a critical role in initiating intracranial aneurysms. Recent studies in a rabbit model indicate that aneurysmal damage initiates under specific wall shear stress conditions when smooth muscle cells (SMCs) become pro-inflammatory and produce matrix metalloproteinases (MMPs). The mechanisms leading to SMC activation and MMP production during hemodynamic aneurysm initiation are unknown. The goal is to determine if nitric oxide and/or superoxide induce SMC changes, MMP production and aneurysmal remodeling following hemodynamic insult.Bilateral common carotid artery ligation was performed on rabbits (n = 19, plus 5 sham operations) to induce aneurysmal damage at the basilar terminus. Ligated animals were treated with the nitric oxide synthase (NOS) inhibitor LNAME (n = 7) or the superoxide scavenger TEMPOL (n = 5) and compared to untreated animals (n = 7). Aneurysm development was assessed histologically 5 days after ligation. Changes in NOS isoforms, peroxynitrite, reactive oxygen species (ROS), MMP-2, MMP-9, and smooth muscle α-actin were analyzed by immunohistochemistry.LNAME attenuated ligation-induced IEL loss, media thinning and bulge formation. In untreated animals, immunofluorescence showed increased endothelial NOS (eNOS) after ligation, but no change in inducible or neuronal NOS. Furthermore, during aneurysm initiation ROS increased in the media, but not the intima, and there was no change in peroxynitrite. In LNAME-treated animals, ROS production did not change. Together, this suggests that eNOS is important for aneurysm initiation but not by producing superoxide. TEMPOL treatment reduced aneurysm development, indicating that the increased medial superoxide is also necessary for aneurysm initiation. LNAME and TEMPOL treatment in ligated animals restored α-actin and decreased MMPs, suggesting that eNOS and superoxide both lead to SMC de-differentiation and MMP production.Aneurysm-inducing hemodynamics lead to increased eNOS and superoxide, which both affect SMC phenotype, increasing MMP production and aneurysmal damage. | | 24992254
|
Amifostine alleviates radiation-induced lethal small bowel damage via promotion of 14-3-3σ-mediated nuclear p53 accumulation. Huang, EY; Wang, FS; Chen, YM; Chen, YF; Wang, CC; Lin, IH; Huang, YJ; Yang, KD Oncotarget
5
9756-69
2014
Show Abstract
Amifostine (AM) is a radioprotector that scavenges free radicals and is used in patients undergoing radiotherapy. p53 has long been implicated in cell cycle arrest for cellular repair after radiation exposure. We therefore investigated the protective p53-dependent mechanism of AM on small bowel damage after lethal whole-abdominal irradiation (WAI). AM increased both the survival rate of rats and crypt survival following lethal 18 Gy WAI. The p53 inhibitor PFT-α compromised AM-mediated effects when administered prior to AM administration. AM significantly increased clonogenic survival in IEC-6 cells expressing wild type p53 but not in p53 knockdown cells. AM significantly increased p53 nuclear accumulation and p53 tetramer expression before irradiation through the inhibition of p53 degradation. AM inhibited p53 interactions with MDM2 but enhanced p53 interactions with 14-3-3σ. Knockdown of 14-3-3σ also compromised the effect of AM on clonogenic survival and p53 nuclear accumulation in IEC-6 cells. For the first time, our data reveal that AM alleviates lethal small bowel damage through the induction of 14-3-3σ and subsequent accumulation of p53. Enhancement of the p53/14-3-3σ interaction results in p53 tetramerization in the nucleus that rescues lethal small bowel damage. | | 25230151
|
Vitamin E dietary supplementation improves neurological symptoms and decreases c-Abl/p73 activation in Niemann-Pick C mice. Marín, T; Contreras, P; Castro, JF; Chamorro, D; Balboa, E; Bosch-Morató, M; Muñoz, FJ; Alvarez, AR; Zanlungo, S Nutrients
6
3000-17
2014
Show Abstract
Niemann-Pick C (NPC) disease is a fatal neurodegenerative disorder characterized by the accumulation of free cholesterol in lysosomes. We have previously reported that oxidative stress is the main upstream stimulus activating the proapoptotic c-Abl/p73 pathway in NPC neurons. We have also observed accumulation of vitamin E in NPC lysosomes, which could lead to a potential decrease of its bioavailability. Our aim was to determine if dietary vitamin E supplementation could improve NPC disease in mice. NPC mice received an alpha-tocopherol (α-TOH) supplemented diet and neurological symptoms, survival, Purkinje cell loss, α-TOH and nitrotyrosine levels, astrogliosis, and the c-Abl/p73 pathway functions were evaluated. In addition, the effect of α-TOH on the c-Abl/p73 pathway was evaluated in an in vitro NPC neuron model. The α-TOH rich diet delayed loss of weight, improved coordination and locomotor function and increased the survival of NPC mice. We found increased Purkinje neurons and α-TOH levels and reduced astrogliosis, nitrotyrosine and phosphorylated p73 in cerebellum. A decrease of c-Abl/p73 activation was also observed in the in vitro NPC neurons treated with α-TOH. In conclusion, our results show that vitamin E can delay neurodegeneration in NPC mice and suggest that its supplementation in the diet could be useful for the treatment of NPC patients. | Immunohistochemistry | 25079853
|
A prescribed Chinese herbal medicine improves glucose profile and ameliorates oxidative stress in Goto-Kakisaki rats fed with high fat diet. Wu, L; Li, X; Zhu, H; Xu, P; Gao, X PloS one
8
e60262
2013
Show Abstract
Oxidative stress (OS) plays a role in hyperglycemia induced islet β cell dysfunction, however, studies on classic anti-oxidants didn't show positive results in treating diabetes. We previously demonstrated that the prescribed Chinese herbal medicine preparation "Qing Huo Yi Hao" (QHYH) improved endothelial function in type 2 diabetic patients. QHYH protected endothelial cells from high glucose-induced damages by scavenging superoxide anion and reducing production of reactive oxygen species. Its active component protected C2C12 myotubes against palmitate-induced oxidative damage and mitochondrial dysfunction. In the present study, we investigated whether QHYH protected islet β cell function exacerbated by high fat diet (HFD) in hyperglycemic GK rats. 4-week-old male rats were randomly divided into high HFD feeding group (n = 20) and chow diet feeding group (n = 10). Each gram of HFD contained 4.8 kcal of energy, 52% of which from fat. Rats on HFD were further divided into 2 groups given either QHYH (3 ml/Kg/d) or saline through gastric tube. After intervention, serum glucose concentrations were monitored; IPGTTs were performed without anesthesia on 5 fasting rats randomly chosen from each group on week 4 and 16. Serum malondialdehyde (MDA) concentrations and activities of serum antioxidant enzymes were measured on week 4 and 16. Islet β cell mass and OS marker staining was done by immunohistochemistry on week 16. QHYH prevented the exacerbation of hyperglycemia in HFD feeding GK rats for 12 weeks. On week 16, it improved the exacerbated glucose tolerance and prevented the further loss of islet β cell mass induced by HFD. QHYH markedly decreased serum MDA concentration, increased serum catalase (CAT) and SOD activities on week 4. However, no differences of serum glucose concentration or OS were observed on week 16. We concluded that QHYH decreased hyperglycemia exacerbated by HFD in GK rats by improving β cell function partly via its antioxidant effect. | | 23565214
|
GH-independent IGF-I action is essential to prevent the development of nonalcoholic steatohepatitis in a GH-deficient rat model. Hitoshi Nishizawa,Michiko Takahashi,Hidenori Fukuoka,Genzo Iguchi,Riko Kitazawa,Yutaka Takahashi Biochemical and biophysical research communications
423
2011
Show Abstract
The progression to nonalcoholic steatohepatitis (NASH) from simple steatosis is associated with the mitochondrial dysfunction, enhanced oxidative stress, and inflammation. Recently, it has been reported that the prevalence of NAFLD (nonalcoholic fatty liver disease)/NASH is increased in patients with adult growth hormone deficiency (AGHD), suggesting that the deficiencies in GH and insulin-like growth factor (IGF-I) are involved in the development of NAFLD/NASH; however, the precise underlying mechanism remains to be elucidated. To clarify the mechanisms and the specific contribution of GH and IGF-I in these conditions, we examined the liver of a GH-deficient rat model, spontaneous dwarf rat (SDR) and the effect of GH and IGF-I administration. SDR showed steatosis and fibrosis in the liver in line with the phenotype observed in AGHD. Serum AST and ALT levels and triglyceride content in the liver were significantly increased in the SDR compared with the control. Intriguingly, the mitochondrial morphology in the SDR hepatocyte was impaired and the area was significantly decreased. Furthermore, oxidative stress in the SDR liver was enhanced. These changes were improved not only by GH but also by IGF-I administration, suggesting that GH-independent IGF-I action plays an essential role in the liver. In conclusion, we demonstrated that GH-deficient rat exhibits NASH and IGF-I plays an essential role to prevent the development of NASH. The improved mitochondrial function and reduced oxidative stress may contribute the effect of IGF-I in the liver. | | 22659415
|
When is mass spectrometry combined with affinity approaches essential? A case study of tyrosine nitration in proteins. Petre, BA; Ulrich, M; Stumbaum, M; Bernevic, B; Moise, A; Döring, G; Przybylski, M Journal of the American Society for Mass Spectrometry
23
1831-40
2011
Show Abstract
Tyrosine nitration in proteins occurs under physiologic conditions and is increased at disease conditions associated with oxidative stress, such as inflammation and Alzheimer's disease. Identification and quantification of tyrosine-nitrations are crucial for understanding nitration mechanism(s) and their functional consequences. Mass spectrometry (MS) is best suited to identify nitration sites, but is hampered by low stabilities and modification levels and possible structural changes induced by nitration. In this insight, we discuss methods for identifying and quantifying nitration sites by proteolytic affinity extraction using nitrotyrosine (NT)-specific antibodies, in combination with electrospray-MS. The efficiency of this approach is illustrated by identification of specific nitration sites in two proteins in eosinophil granules from several biological samples, eosinophil-cationic protein (ECP) and eosinophil-derived neurotoxin (EDN). Affinity extraction combined with Edman sequencing enabled the quantification of nitration levels, which were found to be 8 % and 15 % for ECP and EDN, respectively. Structure modeling utilizing available crystal structures and affinity studies using synthetic NT-peptides suggest a tyrosine nitration sequence motif comprising positively charged residues in the vicinity of the NT- residue, located at specific surface- accessible sites of the protein structure. Affinities of Tyr-nitrated peptides from ECP and EDN to NT-antibodies, determined by online bioaffinity- MS, provided nanomolar K(D) values. In contrast, false-positive identifications of nitrations were obtained in proteins from cystic fibrosis patients upon using NT-specific antibodies, and were shown to be hydroxy-tyrosine modifications. These results demonstrate affinity- mass spectrometry approaches to be essential for unequivocal identification of biological tyrosine nitrations. | | 22907170
|