Null and hypomorph Prickle1 alleles in mice phenocopy human Robinow syndrome and disrupt signaling downstream of Wnt5a. Liu, C; Lin, C; Gao, C; May-Simera, H; Swaroop, A; Li, T Biology open
3
861-70
2014
Show Abstract
Planar cell polarity (PCP) signaling plays a critical role in tissue morphogenesis. In mammals, disruption of three of the six "core PCP" components results in polarity-dependent defects with rotated cochlear hair cell stereocilia and open neural tube. We recently demonstrated a role of Prickle1, a core PCP molecule in Drosophila, in mammalian neuronal development. To examine Prickle1 function along a broader developmental window, we generated three mutant alleles in mice. We show that the complete loss of Prickle1 leads to systemic tissue outgrowth defects, aberrant cell organization and disruption of polarity machinery. Curiously, Prickle1 mutants recapitulate the characteristic features of human Robinow syndrome and phenocopy mouse mutants with Wnt5a or Ror2 gene defects, prompting us to explore an association of Prickle1 with the Wnt pathway. We show that Prickle1 is a proteasomal target of Wnt5a signaling and that Dvl2, a target of Wnt5a signaling, is misregulated in Prickle1 mutants. Our studies implicate Prickle1 as a key component of the Wnt-signaling pathway and suggest that Prickle1 mediates some of the WNT5A-associated genetic defects in Robinow syndrome. | 25190059
|
Rac1 acts in conjunction with Nedd4 and dishevelled-1 to promote maturation of cell-cell contacts. Nethe, M; de Kreuk, BJ; Tauriello, DV; Anthony, EC; Snoek, B; Stumpel, T; Salinas, PC; Maurice, MM; Geerts, D; Deelder, AM; Hensbergen, PJ; Hordijk, PL Journal of cell science
125
3430-42
2011
Show Abstract
The Rho-GTPase Rac1 promotes actin polymerization and membrane protrusion that mediate initial contact and subsequent maturation of cell-cell junctions. Here we report that Rac1 associates with the ubiquitin-protein ligase neural precursor cell expressed developmentally down-regulated 4 (Nedd4). This interaction requires the hypervariable C-terminal domain of Rac1 and the WW domains of Nedd4. Activated Rac1 colocalises with endogenous Nedd4 at epithelial cell-cell contacts. Reduction of Nedd4 expression by shRNA results in reduced transepithelial electrical resistance (TER) and concomitant changes in the distribution of adherens and tight junction markers. Conversely, expression of Nedd4 promotes TER, suggesting that Nedd4 cooperates with Rac1 in the induction of junctional maturation. We found that Nedd4, but not Nedd4-2, mediates the ubiquitylation and degradation of the adapter protein dishevelled-1 (Dvl1), the expression of which negatively regulates cell-cell contact. Nedd4-mediated ubiquitylation requires its binding to the C-terminal domain of Dvl1, comprising the DEP domain, and targets an N-terminal lysine-rich region upstream of the Dvl1 DIX domain. We found that endogenous Rac1 colocalises with endogenous Dvl1 in intracellular puncta as well as on cell-cell junctions. Finally, activated Rac1 was found to stimulate Nedd4 activity, resulting in increased ubiquitylation of Dvl1. Together, these data reveal a novel Rac1-dependent signalling pathway that, through Nedd4-mediated ubiquitylation of Dvl1, stimulates the maturation of epithelial cell-cell contacts. | 22467858
|
Dishevelled 2 signaling promotes self-renewal and tumorigenicity in human gliomas. Pulvirenti, T; Van Der Heijden, M; Droms, LA; Huse, JT; Tabar, V; Hall, A Cancer research
71
7280-90
2010
Show Abstract
Glioblastoma multiforme is the most common glioma variant in adults and is highly malignant. Tumors are thought to harbor a subpopulation of stem-like cancer cells, with the bulk resembling neural progenitor-like cells that are unable to fully differentiate. Although multiple pathways are known to be involved in glioma tumorigenesis, the role of Wnt signaling has been poorly described. Here, we show that Dishevelled 2 (Dvl2), a key component of the Wnt signaling pathway, is overexpressed in human gliomas. RNA interference-mediated depletion of Dvl2 blocked proliferation and promoted the differentiation of cultured human glioma cell lines and primary, patient-derived glioma cells. In addition, Dvl2 depletion inhibited tumor formation after intracranial injection of glioblastoma cells in immunodeficient mice. Inhibition of canonical Wnt/β-catenin signaling also blocked proliferation, but unlike Dvl2 depletion, did not induce differentiation. Finally, Wnt5a, a noncanonical Wnt ligand, was also required for glioma cell proliferation. The data therefore suggest that both canonical and noncanonical Wnt signaling pathways downstream of Dvl2 cooperate to maintain the proliferative capacity of human glioblastomas. | 21990322
|
Dvl2 promotes intestinal length and neoplasia in the ApcMin mouse model for colorectal cancer. Metcalfe, C; Ibrahim, AE; Graeb, M; de la Roche, M; Schwarz-Romond, T; Fiedler, M; Winton, DJ; Corfield, A; Bienz, M Cancer research
70
6629-38
2009
Show Abstract
APC mutations cause activation of Wnt/beta-catenin signaling, which invariably leads to colorectal cancer. Similarly, overexpressed Dvl proteins are potent activators of beta-catenin signaling. Screening a large tissue microarray of different staged colorectal tumors by immunohistochemistry, we found that Dvl2 has a strong tendency to be overexpressed in colorectal adenomas and carcinomas, in parallel to nuclear beta-catenin and Axin2 (a universal transcriptional target of Wnt/beta-catenin signaling). Furthermore, deletion of Dvl2 reduced the intestinal tumor numbers in a dose-dependent way in the Apc(Min) model for colorectal cancer. Interestingly, the small intestines of Dvl2 mutants are shortened, reflecting in part a reduction of their crypt diameter and cell size. Consistent with this, mammalian target of rapamycin (mTOR) signaling is highly active in normal intestinal crypts in which Wnt/beta-catenin signaling is active, and activated mTOR signaling (as revealed by staining for phosphorylated 4E-BP1) serves as a diagnostic marker of Apc(Min) mutant adenomas. Inhibition of mTOR signaling in Apc(Min) mutant mice by RAD001 (everolimus) reduces their intestinal tumor load, similarly to Dvl2 deletion. mTOR signaling is also consistently active in human hyperplastic polyps and has a significant tendency for being active in adenomas and carcinomas. Our results implicate Dvl2 and mTOR in the progression of colorectal neoplasia and highlight their potential as therapeutic targets in colorectal cancer. Full Text Article | 20663899
|