Profiling post-transcriptionally networked mRNA subsets using RIP-Chip and RIP-Seq. Jayaseelan, S; Doyle, F; Tenenbaum, SA Methods
67
13-9
2014
Show Abstract
Post-transcriptional regulation of messenger RNA contributes to numerous aspects of gene expression. The key component to this level of regulation is the interaction of RNA-binding proteins (RBPs) and their associated target mRNA. Splicing, stability, localization, translational efficiency, and alternate codon use are just some of the post-transcriptional processes regulated by RBPs. Central to our understanding of these processes is the need to characterize the network of RBP-mRNA associations and create a map of this functional post-transcriptional regulatory system. Here we provide a detailed methodology for mRNA isolation using RBP immunoprecipitation (RIP) as a primary partitioning approach followed by microarray (Chip) or next generation sequencing (NGS) analysis. We do this by using specific antibodies to target RBPs for the capture of associated RNA cargo. RIP-Chip/Seq has proven to be is a versatile, genomic technique that has been widely used to study endogenous RBP-RNA associations. | | 24257445
|
HTS-Compatible Patient-Derived Cell-Based Assay to Identify Small Molecule Modulators of Aberrant Splicing in Myotonic Dystrophy Type 1. O'Leary, DA; Vargas, L; Sharif, O; Garcia, ME; Sigal, YJ; Chow, SK; Schmedt, C; Caldwell, JS; Brinker, A; Engels, IH Current chemical genomics
4
9-18
2009
Show Abstract
Myotonic dystrophy type 1 (DM1) is a genetic disorder characterized by muscle wasting, myotonia, cataracts, cardiac arrhythmia, hyperinsulinism and intellectual deficits, and is caused by expansion of a CTG repeat in the 3'UTR of the Dystrophia Myotonica-Protein Kinase (DMPK) gene. The DMPK transcripts containing expanded CUG repeats accumulate in nuclear foci and ultimately cause mis-splicing of secondary genes through the dysregulation of RNA-binding proteins including Muscleblind 1 (MBNL1) and CUG binding protein 1 (CUGBP1). Correction of mis-splicing of genes such as the Skeletal muscle-specific chloride channel 1 (CLCN1), Cardiac troponin T (TNNT2), Insulin receptor (INSR) and Sarcoplasmic/endoplasmic reticulum Ca(2+)ATPase 1 (SERCA1) may alleviate some of the symptoms of DM1; hence identification of small molecule modulators is an important step towards a therapy for DM1 patients. Here we describe the generation of immortalized myoblast cell lines derived from healthy (DMPK CTG(5)) and DM1 patient (DMPK CTG(1000)) fibroblasts by constitutive overexpression of human telomerase reverse transcriptase (hTERT) and inducible overexpression of the Myoblast determination factor (MYOD). MBNL1-containing nuclear foci, mis-splicing events and defective myotube differentiation defects characteristic of DM1 were observed in these cells. A CLCN1 luciferase minigene construct (CLCN1-luc) was stably introduced to monitor intron 2 retention in the DM1 cellular context (a reported splicing defect in DM1). The assay was validated by performing a high-throughput screen (HTS) of ~13,000 low molecular weight compounds against the CLCN1-luc DM1 myoblast cell line, providing an ideal system for conducting HTS to better understand and treat DM1. Full Text Article | | 20502647
|
Reversible model of RNA toxicity and cardiac conduction defects in myotonic dystrophy. Mahadevan, MS; Yadava, RS; Yu, Q; Balijepalli, S; Frenzel-McCardell, CD; Bourne, TD; Phillips, LH Nature genetics
38
1066-70
2005
Show Abstract
Myotonic dystrophy (DM1), the most common muscular dystrophy in adults, is caused by an expanded (CTG)n tract in the 3' UTR of the gene encoding myotonic dystrophy protein kinase (DMPK), which results in nuclear entrapment of the 'toxic' mutant RNA and interacting RNA-binding proteins (such as MBNL1) in ribonuclear inclusions. It is unclear if therapy aimed at eliminating the toxin would be beneficial. To address this, we generated transgenic mice expressing the DMPK 3' UTR as part of an inducible RNA transcript encoding green fluorescent protein (GFP). We were surprised to find that mice overexpressing a normal DMPK 3' UTR mRNA reproduced cardinal features of myotonic dystrophy, including myotonia, cardiac conduction abnormalities, histopathology and RNA splicing defects in the absence of detectable nuclear inclusions. However, we observed increased levels of CUG-binding protein (CUG-BP1) in skeletal muscle, as seen in individuals with DM1. Notably, these effects were reversible in both mature skeletal and cardiac muscles by silencing transgene expression. These results represent the first in vivo proof of principle for a therapeutic strategy for treatment of myotonic dystrophy by ablating or silencing expression of the toxic RNA molecules. | Western Blotting | 16878132
|
Identification of a (CUG)n triplet repeat RNA-binding protein and its expression in myotonic dystrophy. Timchenko, L T, et al. Nucleic Acids Res., 24: 4407-14 (1996)
1996
Show Abstract
Myotonic dystrophy (DM) is an autosomal dominant neuromuscular disease that is associated with a (CTG)n repeat expansion in the 3'-untranslated region of the myotonin protein kinase (Mt-PK) gene. This study reports the isolation and characterization of a (CUG)n triplet repeat pre-mRNA/mRNA binding protein that may play an important role in DM pathogenesis. Two HeLa cell proteins, CUG-BP1 and CUG-BP2, have been purified based upon their ability to bind specifically to (CUG)8 oligonucleotides in vitro. While CUG-BP1 is the major (CUG)8-binding activity in normal cells, nuclear CUG-BP2 binding activity increases in DM cells. Both CUG-BP1 and CUG-BP2 have been identified as isoforms of a novel heterogeneous nuclear ribonucleoprotein (hnRNP), hNab50. The CUG-BP/hNab50 protein is localized predominantly in the nucleus and is associated with polyadenylated RNAs in vivo. In vitro RNA-binding/photocrosslinking studies demonstrate that CUG-BP/hNab50 binds to RNAs containing the Mt-PK 3'-UTR. We propose that the (CUG)n repeat region in Mt-PK mRNA is a binding site for CUG-BP/hNab50 in vivo, and triplet repeat expansion leads to sequestration of this hnRNP on mutant Mt-PK transcripts. | | 8948631
|