Biochemical assessment of precuneus and posterior cingulate gyrus in the context of brain aging and Alzheimer's disease. Maarouf, CL; Kokjohn, TA; Walker, DG; Whiteside, CM; Kalback, WM; Whetzel, A; Sue, LI; Serrano, G; Jacobson, SA; Sabbagh, MN; Reiman, EM; Beach, TG; Roher, AE PloS one
9
e105784
2014
Show Abstract
Defining the biochemical alterations that occur in the brain during "normal" aging is an important part of understanding the pathophysiology of neurodegenerative diseases and of distinguishing pathological conditions from aging-associated changes. Three groups were selected based on age and on having no evidence of neurological or significant neurodegenerative disease: 1) young adult individuals, average age 26 years (n = 9); 2) middle-aged subjects, average age 59 years (n = 5); 3) oldest-old individuals, average age 93 years (n = 6). Using ELISA and Western blotting methods, we quantified and compared the levels of several key molecules associated with neurodegenerative disease in the precuneus and posterior cingulate gyrus, two brain regions known to exhibit early imaging alterations during the course of Alzheimer's disease. Our experiments revealed that the bioindicators of emerging brain pathology remained steady or decreased with advancing age. One exception was S100B, which significantly increased with age. Along the process of aging, neurofibrillary tangle deposition increased, even in the absence of amyloid deposition, suggesting the presence of amyloid plaques is not obligatory for their development and that limited tangle density is a part of normal aging. Our study complements a previous assessment of neuropathology in oldest-old subjects, and within the limitations of the small number of individuals involved in the present investigation, it adds valuable information to the molecular and structural heterogeneity observed along the course of aging and dementia. This work underscores the need to examine through direct observation how the processes of amyloid deposition unfold or change prior to the earliest phases of dementia emergence. | 25166759
|
Alzheimer's disease and non-demented high pathology control nonagenarians: comparing and contrasting the biochemistry of cognitively successful aging. Maarouf, CL; Daugs, ID; Kokjohn, TA; Walker, DG; Hunter, JM; Kruchowsky, JC; Woltjer, R; Kaye, J; Castaño, EM; Sabbagh, MN; Beach, TG; Roher, AE PloS one
6
e27291
2010
Show Abstract
The amyloid cascade hypothesis provides an economical mechanistic explanation for Alzheimer's disease (AD) dementia and correlated neuropathology. However, some nonagenarian individuals (high pathology controls, HPC) remain cognitively intact while enduring high amyloid plaque loads for decades. If amyloid accumulation is the prime instigator of neurotoxicity and dementia, specific protective mechanisms must enable these HPC to evade cognitive decline. We evaluated the neuropathological and biochemical differences existing between non-demented (ND)-HPC and an age-matched cohort with AD dementia. The ND-HPC selected for our study were clinically assessed as ND and possessed high amyloid plaque burdens. ELISA and Western blot analyses were used to quantify a group of proteins related to APP/Aβ/tau metabolism and other neurotrophic and inflammation-related molecules that have been found to be altered in neurodegenerative disorders and are pivotal to brain homeostasis and mental health. The molecules assumed to be critical in AD dementia, such as soluble or insoluble Aβ40, Aβ42 and tau were quantified by ELISA. Interestingly, only Aβ42 demonstrated a significant increase in ND-HPC when compared to the AD group. The vascular amyloid load which was not used in the selection of cases, was on the average almost 2-fold greater in AD than the ND-HPC, suggesting that a higher degree of microvascular dysfunction and perfusion compromise was present in the demented cohort. Neurofibrillary tangles were less frequent in the frontal cortices of ND-HPC. Biochemical findings included elevated vascular endothelial growth factor, apolipoprotein E and the neuroprotective factor S100B in ND-HPC, while anti-angiogenic pigment epithelium derived factor levels were lower. The lack of clear Aβ-related pathological/biochemical demarcation between AD and ND-HPC suggests that in addition to amyloid plaques other factors, such as neurofibrillary tangle density and vascular integrity, must play important roles in cognitive failure. | 22087282
|