A transgenic mouse for in vivo detection of endogenous labeled mRNA. Lionnet, T; Czaplinski, K; Darzacq, X; Shav-Tal, Y; Wells, AL; Chao, JA; Park, HY; de Turris, V; Lopez-Jones, M; Singer, RH Nature methods
8
165-70
2010
Show Abstract
Live-cell single mRNA imaging is a powerful tool but has been restricted in higher eukaryotes to artificial cell lines and reporter genes. We describe an approach that enables live-cell imaging of single endogenous labeled mRNA molecules transcribed in primary mammalian cells and tissue. We generated a knock-in mouse line with an MS2 binding site (MBS) cassette targeted to the 3' untranslated region of the essential β-actin gene. As β-actin-MBS was ubiquitously expressed, we could uniquely address endogenous mRNA regulation in any tissue or cell type. We simultaneously followed transcription from the β-actin alleles in real time and observed transcriptional bursting in response to serum stimulation with precise temporal resolution. We tracked single endogenous labeled mRNA particles being transported in primary hippocampal neurons. The MBS cassette also enabled high-sensitivity fluorescence in situ hybridization (FISH), allowing detection and localization of single β-actin mRNA molecules in various mouse tissues. | 21240280
|
Cold-induced exodus of postsynaptic proteins from dendritic spines. Hui-Hsuan Cheng, Zu-Han Huang, Wei-Hsiang Lin, Wei-Yuan Chow, Yen-Chung Chang, Hui-Hsuan Cheng, Zu-Han Huang, Wei-Hsiang Lin, Wei-Yuan Chow, Yen-Chung Chang, Hui-Hsuan Cheng, Zu-Han Huang, Wei-Hsiang Lin, Wei-Yuan Chow, Yen-Chung Chang Journal of neuroscience research
87
460-9
2009
Show Abstract
Dendritic spines are small protrusions on neuronal dendrites and the major target of the excitatory inputs in mammalian brains. Cultured neurons and brain slices are important tools in studying the biochemical and cellular properties of dendritic spines. During the processes of immunocytochemical studies of neurons and the preparation of brain slices, neurons were often kept at temperatures lower than 37 degrees C for varied lengths of time. This study sought to investigate whether and how cold treatment would affect the protein composition of dendritic spines. The results indicated that upon cold treatment four postsynaptic proteins, namely, alpha,beta-tubulins, calcium, calmodulin-dependent protein kinase IIalpha, and cytoplasmic dynein heavy chain and microtubule-associated protein 2, but not PSD-95 or AMPA receptors, exited from the majority of dendritic spines of cultured rat hippocampal neurons in a Gd(3+)-sensitive manner. The cold-induced exit of tubulins from dendritic spines was further found to be an energy-dependent process involving the activation of Gd(3+)-sensitive calcium channels and ryanodine receptors. The results thus indicate that changes in temperature, calcium concentration, and energy supply of the medium surrounding neurons would affect the protein composition of the dendritic spines and conceivably the protein composition of the subcellular organizations, such as the postsynaptic density, in the cytoplasm of dendritic spines. | 18756518
|
Tissue-specific tropomyosin isoform composition. Schevzov, Galina, et al. J. Histochem. Cytochem., 53: 557-70 (2005)
2004
Show Abstract
Four distinct genes encode tropomyosin (Tm) proteins, integral components of the actin microfilament system. In non-muscle cells, over 40 Tm isoforms are derived using alternative splicing. Distinct populations of actin filaments characterized by the composition of these Tm isoforms are found differentially sorted within cells (Gunning et al. 1998b). We hypothesized that these distinct intracellular compartments defined by the association of Tm isoforms may allow for independent regulation of microfilament function. Consequently, to understand the molecular mechanisms that give rise to these different microfilaments and their regulation, a cohort of fully characterized isoform-specific Tm antibodies was required. The characterization protocol initially involved testing the specificity of the antibodies on bacterially produced Tm proteins. We then confirmed that these Tm antibodies can be used to probe the expression and subcellular localization of different Tm isoforms by Western blot analysis, immunofluorescence staining of cells in culture, and immunohistochemistry of paraffin wax-embedded mouse tissues. These Tm antibodies, therefore, have the capacity to monitor specific actin filament populations in a range of experimental systems. | 15872049
|