Polycomb CBX7 directly controls trimethylation of histone H3 at lysine 9 at the p16 locus. Li, Q; Wang, X; Lu, Z; Zhang, B; Guan, Z; Liu, Z; Zhong, Q; Gu, L; Zhou, J; Zhu, B; Ji, J; Deng, D PloS one
5
e13732
2009
Show Abstract
H3K9 trimethylation (H3K9me3) and binding of PcG repressor complex-1 (PRC1) may play crucial roles in the epigenetic silencing of the p16 gene. However, the mechanism of the initiation of this trimethylation is unknown.In the present study, we found that upregulating the expression of PRC1 component Cbx7 in gastric cancer cell lines MGC803 and BGC823 led to significantly suppress the expression of genes within the p16-Arf-p15 locus. H3K9me3 formation was observed at the p16 promoter and Regulatory Domain (RD). CBX7 and SUV39H2 binding to these regions were also detectable in the CBX7-stably upregulated cells. CBX7-SUV39H2 complexes were observed within nucleus in bimolecular fluorescence complementation assay (BiFC). Mutations of the chromodomain or deletion of Pc-box abolished the CBX7-binding and H3K9me3 formation, and thus partially repressed the function of CBX7. SiRNA-knockdown of Suv39h2 blocked the repressive effect of CBX7 on p16 transcription. Moreover, we found that expression of CBX7 in gastric carcinoma tissues with p16 methylation was significantly lower than that in their corresponding normal tissues, which showed a negative correlation with transcription of p16 in gastric mucosa.These results demonstrated for the first time, to our knowledge, that CBX7 could initiate H3K9me3 formation at the p16 promoter. | 21060834
|
Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Zou, Lee and Elledge, Stephen J Science, 300: 1542-8 (2003)
2003
Show Abstract
The function of the ATR (ataxia-telangiectasia mutated- and Rad3-related)-ATRIP (ATR-interacting protein) protein kinase complex is crucial for the cellular response to replication stress and DNA damage. Here, we show that replication protein A (RPA), a protein complex that associates with single-stranded DNA (ssDNA), is required for the recruitment of ATR to sites of DNA damage and for ATR-mediated Chk1 activation in human cells. In vitro, RPA stimulates the binding of ATRIP to ssDNA. The binding of ATRIP to RPA-coated ssDNA enables the ATR-ATRIP complex to associate with DNA and stimulates phosphorylation of the Rad17 protein that is bound to DNA. Furthermore, Ddc2, the budding yeast homolog of ATRIP, is specifically recruited to double-strand DNA breaks in an RPA-dependent manner. A checkpoint-deficient mutant of RPA, rfa1-t11, is defective for recruiting Ddc2 to ssDNA both in vivo and in vitro. Our data suggest that RPA-coated ssDNA is the critical structure at sites of DNA damage that recruits the ATR-ATRIP complex and facilitates its recognition of substrates for phosphorylation and the initiation of checkpoint signaling. | 12791985
|
ATR and ATRIP: partners in checkpoint signaling. Cortez, D, et al. Science, 294: 1713-6 (2001)
2001
Show Abstract
The checkpoint kinases ATM (ataxia telangiectasia mutated) and ATR (ATM and Rad3 related) transduce genomic stress signals to halt cell cycle progression and promote DNA repair. We report the identification of an ATR-interacting protein (ATRIP) that is phosphorylated by ATR, regulates ATR expression, and is an essential component of the DNA damage checkpoint pathway. ATR and ATRIP both localize to intranuclear foci after DNA damage or inhibition of replication. Deletion of ATR mediated by the Cre recombinase caused the loss of ATR and ATRIP expression, loss of DNA damage checkpoint responses, and cell death. Therefore, ATR is essential for the viability of human somatic cells. Small interfering RNA directed against ATRIP caused the loss of both ATRIP and ATR expression and the loss of checkpoint responses to DNA damage. Thus, ATRIP and ATR are mutually dependent partners in cell cycle checkpoint signaling pathways. | 11721054
|