Ethanol enhances the endothelial nitric oxide synthase response to agonists. R K Davda,L J Chandler,F T Crews,N J Guzman Hypertension
21
1992
Zobrazit abstrakt
Chronic ethanol consumption is associated with an increased prevalence of hypertension. The mechanisms of this form of hypertension are unknown. Rats fed ethanol for 2 days develop a tolerance to the acute vasoconstrictive effects of ethanol that is believed to be endothelium dependent. We investigated the effects of acute and chronic ethanol exposure on agonist-stimulated nitric oxide synthase activity in bovine pulmonary artery endothelial cells. Exposure of bovine pulmonary artery endothelial cells to ethanol (100 mmol/L) for 20-120 minutes did not change either basal or agonist-stimulated nitric oxide synthase activity measured as the rate of conversion of [3H]L-arginine to [3H]L-citrulline. Chronic exposure of endothelial cells to ethanol (100 mmol/L) for 96 hours significantly increased bradykinin-, adenosine 5'-triphosphate-, and ionomycin-stimulated nitric oxide synthase activity without affecting basal enzyme activity. The ethanol-induced increase in nitric oxide synthase response to agonists was dependent on the duration of ethanol exposure as well as the concentration of ethanol. Moreover, the effect of ethanol was characterized by an increase in the maximal nitric oxide synthase response to adenosine 5'-triphosphate without changes in the EC50. Removal of calcium or addition of N omega-nitro-L-arginine completely abolished agonist-stimulated nitric oxide synthase activity in both control and ethanol-treated cells. Our observations support the hypothesis that ethanol enhances nitric oxide synthase response to agonists during early ethanol exposure and may serve in a protective role against its hypertensive effect. | 7685006
|
Glycyl-L-glutamine stimulates the accumulation of A12 acetylcholinesterase but not of nicotinic acetylcholine receptors in quail embryonic myotubes by a cyclic AMP-independent mechanism. H S Lotwick,L W Haynes,J Ham Journal of neurochemistry
54
1990
Zobrazit abstrakt
Myotubes prepared from the Japanese quail embryo at 9 days gestation were cultivated in the presence of glycyl-L-glutamine (Gly-Gln, beta-endorphin C-terminal dipeptide) or glycyl-glutamic acid (Gly-Glu), and changes in the activity of acetylcholinesterase (AChE) molecular forms and binding of 125I-alpha-bungarotoxin (alpha BGT) to cell surface nicotinic acetylcholine receptors were measured. The A12 oligomer was the major form of AChE in the cultures. The activity of all molecular forms of the enzyme was increased in the presence of Gly-Gln, but Gly-Glu did not alter AChE activity. In cells infected with the temperature-sensitive mutant, La31C, of Rous sarcoma virus (ts-RSV) and transferred to the nonpermissive temperature, the A12 form of AChE was absent, but its activity could be induced following exposure of the cells to Gly-Gln. When cells treated in this way were incubated in the presence of collagenase, there was a small but significant loss of A12 AChE activity, indicating that Gly-Gln stimulated the activity of a pool of this oligomer which was mainly but not entirely intracellular. Neither Gly-Gln nor Gly-Glu influenced 125I-alpha BGT binding after exposure of the cells to the peptides for any duration. Neither Gly-Gln nor Gly-Glu influenced the accumulation of cyclic AMP in the cultures. beta-Endorphin is one of a family of peptides that coexist transiently with acetylcholine in lower motoneurones of vertebrates in the perinatal period. This report provides evidence for the selective trophic activity of one of its derivatives toward the postsynaptic cholinergic system in avian muscle cells. | 2156012
|