Intracellular α-ketoglutarate maintains the pluripotency of embryonic stem cells. Carey, BW; Finley, LW; Cross, JR; Allis, CD; Thompson, CB Nature
518
413-6
2015
Zobrazit abstrakt
The role of cellular metabolism in regulating cell proliferation and differentiation remains poorly understood. For example, most mammalian cells cannot proliferate without exogenous glutamine supplementation even though glutamine is a non-essential amino acid. Here we show that mouse embryonic stem (ES) cells grown under conditions that maintain naive pluripotency are capable of proliferation in the absence of exogenous glutamine. Despite this, ES cells consume high levels of exogenous glutamine when the metabolite is available. In comparison to more differentiated cells, naive ES cells utilize both glucose and glutamine catabolism to maintain a high level of intracellular α-ketoglutarate (αKG). Consequently, naive ES cells exhibit an elevated αKG to succinate ratio that promotes histone/DNA demethylation and maintains pluripotency. Direct manipulation of the intracellular αKG/succinate ratio is sufficient to regulate multiple chromatin modifications, including H3K27me3 and ten-eleven translocation (Tet)-dependent DNA demethylation, which contribute to the regulation of pluripotency-associated gene expression. In vitro, supplementation with cell-permeable αKG directly supports ES-cell self-renewal while cell-permeable succinate promotes differentiation. This work reveals that intracellular αKG/succinate levels can contribute to the maintenance of cellular identity and have a mechanistic role in the transcriptional and epigenetic state of stem cells. | 25487152
|
Autocatalytic differentiation of epigenetic modifications within the Arabidopsis genome. Inagaki, S; Miura-Kamio, A; Nakamura, Y; Lu, F; Cui, X; Cao, X; Kimura, H; Saze, H; Kakutani, T The EMBO journal
29
3496-506
2009
Zobrazit abstrakt
In diverse eukaryotes, constitutively silent sequences, such as transposons and repeats, are marked by methylation at histone H3 lysine 9 (H3K9me). Although selective H3K9me is critical for maintaining genome integrity, mechanisms to exclude H3K9me from active genes remain largely unexplored. Here, we show in Arabidopsis that the exclusion depends on a histone demethylase gene, IBM1 (increase in BONSAI methylation). Loss-of-function ibm1 mutation results in ectopic H3K9me and non-CG methylation in thousands of genes. The ibm1-induced genic H3K9me depends on both histone methylase KYP/SUVH4 and DNA methylase CMT3, suggesting interdependence of two epigenetic marks--H3K9me and non-CG methylation. Notably, IBM1 enhances loss of H3K9me in transcriptionally de-repressed sequences. Furthermore, disruption of transcription in genes induces ectopic non-CG methylation, which mimics the loss of IBM1 function. We propose that active chromatin is stabilized by an autocatalytic loop of transcription and H3K9 demethylation. This process counteracts a similarly autocatalytic accumulation of silent epigenetic marks, H3K9me and non-CG methylation. | 20834229
|
The target of the NSD family of histone lysine methyltransferases depends on the nature of the substrate. Li, Yan, et al. J. Biol. Chem., 284: 34283-95 (2009)
2009
Zobrazit abstrakt
The NSD (nuclear receptor SET domain-containing) family of histone lysine methyltransferases is a critical participant in chromatin integrity as evidenced by the number of human diseases associated with the aberrant expression of its family members. Yet, the specific targets of these enzymes are not clear, with marked discrepancies being reported in the literature. We demonstrate that NSD2 can exhibit disparate target preferences based on the nature of the substrate provided. The NSD2 complex purified from human cells and recombinant NSD2 both exhibit specific targeting of histone H3 lysine 36 (H3K36) when provided with nucleosome substrates, but histone H4 lysine 44 is the primary target in the case of octamer substrates, irrespective of the histones being native or recombinant. This disparity is negated when NSD2 is presented with octamer targets in conjunction with short single- or double-stranded DNA. Although the octamers cannot form nucleosomes, the target is nonetheless nucleosome-specific as is the product, dimethylated H3K36. This study clarifies in part the previous discrepancies reported with respect to NSD targets. We propose that DNA acts as an allosteric effector of NSD2 such that H3K36 becomes the preferred target. | 19808676
|