Deficiency in the metabolite receptor SUCNR1 (GPR91) leads to outer retinal lesions. Favret, S; Binet, F; Lapalme, E; Leboeuf, D; Carbadillo, J; Rubic, T; Picard, E; Mawambo, G; Tetreault, N; Joyal, JS; Chemtob, S; Sennlaub, F; Sangiovanni, JP; Guimond, M; Sapieha, P Aging
5
427-44
2013
Zobrazit abstrakt
Age-related macular degeneration (AMD) is a prominent cause of blindness in the Western world. To date, its molecular pathogenesis as well as the sequence of events leading to retinal degeneration remain largely ill-defined. While the invasion of choroidal neovessels in the retina is the primary mechanism that precipitates loss of sight, an earlier dry form precedes it. Here we provide the first evidence for the protective role of the Retinal Pigment Epithelium (RPE)-resident metabolite receptor, succinate receptor 1 (SUCNR1; G-Protein coupled Receptor-91 (GPR91), in preventing dry AMD-like lesions of the outer retina. Genetic analysis of 925 patients with geographic atrophy and 1199 AMD-free peers revealed an increased risk of developing geographic atrophy associated with intronic variants in theSUCNR1 gene. In mice, outer retinal expression of SUCNR1 is observed in the RPE as well as microglial cells and decreases progressively with age. Accordingly, Sucnr1-/- mice show signs of premature sub-retinal dystrophy with accumulation of oxidized-LDL, abnormal thickening of Bruch's membrane and a buildup of subretinal microglia. The accumulation of microglia in Sucnr1-deficient mice is likely triggered by the inefficient clearance of oxidized lipids by the RPE as bone marrow transfer of wild-type microglia into Sucnr1-/- mice did not salvage the patho-phenotype and systemic lipolysis was equivalent between wild-type and control mice. Our findings suggest that deficiency in SUCNR1 is a possible contributing factor to the pathogenesis of dry AMD and thus broaden our understanding of this clinically unmet need. | 23833031
|
Dietary soy protein benefit in experimental kidney disease is preserved after isoflavone depletion of diet. Ogborn MR, Nitschmann E, Bankovic-Calic N, Weiler HA, Aukema HM Exp Biol Med (Maywood)
235
1315-20. Epub 2010 Oct 4.
2009
Zobrazit abstrakt
Soy diet ameliorates renal injury in the Han:SPRD-cy rat. The relative roles of protein, isoflavones and changes in polyunsaturated fatty acid (PUFA) status are not determined. We fed male Han:SPRD-cy heterozygotes casein (C), high isoflavone soy protein (HIS), alcohol-extracted low isoflavone soy protein (LIS) or mixed soy protein diet (MIS). LIS and MIS were associated with a small decrease in animal weight compared with HIS or C. Soy diets preserved normal renal function and reduced relative renal weight (10.9-14.6 g/kg, cf. 23.6, P < 0.001), scores for cystic change (0.168-0.239, cf. 0.386, P < 0.05), fibrosis (0.013-0.015, cf. 0.032, P < 0.05), tissue oxidized LDL content (0.012-0.021, cf. 0.048, P < 0.05), inflammation (8.5-12.9, cf. 31.2, P < 0.05) and epithelial cell proliferation (6.5-13.8, cf. 26.3, P < 0.05). In post hoc testing, LIS produced a greater reduction in relative renal weight, cystic change and epithelial proliferation, whereas HIS produced a significantly greater reduction in oxidized-LDL. Soy diets were associated with increased hepatic content of 18C PUFA (P < 0.001). LIS and HIS diets were associated with a small increase in body fat content (P < 0.001). Alcohol-extracted soy protein retains its major protective effects in this model with subtle differences attributable to isoflavones. | 20921276
|
Curcumin eliminates oxidized LDL roles in activating hepatic stellate cells by suppressing gene expression of lectin-like oxidized LDL receptor-1. Qiaohua Kang,Anping Chen Laboratory investigation; a journal of technical methods and pathology
89
2009
Zobrazit abstrakt
Type II diabetes mellitus (T2DM) is often accompanied by non-alcoholic steatohepatitis (NASH) and associated with hypercholesterolemia, that is, increased levels of plasma low-density lipoprotein (LDL) and oxidized LDL (ox-LDL). Approximately one-third of NASH develops hepatic fibrosis. The role of hypercholesterolemia in T2DM and NASH-associated hepatic fibrogenesis remains obscure. We previously reported that the phytochemical curcumin inhibited the activation of hepatic stellate cells (HSCs), the major effector cells during hepatic fibrogenesis, and protected the liver from fibrogenesis in vitro and in vivo. The aims of this study are to evaluate the role of ox-LDL in activation of HSCs, to assess curcumin effects on eliminating the role of ox-LDL, and to further explore the underlying mechanisms. In this report, we observe that ox-LDL alters the expression of genes closely relevant to HSC activation, which is eliminated by curcumin. Curcumin suppresses gene expression of lectin-like oxidized LDL receptor-1 (LOX-1), leading to the blockade of the transport of extracellular ox-LDL into cells. This suppressive effect of curcumin results from the interruption of Wnt signaling and the activation of peroxisome proliferator-activated receptor-gamma (PPARgamma). In conclusion, these results support our initial hypothesis and demonstrate that ox-LDL stimulates HSC activation, which is eliminated by curcumin by suppressing lox-1 expression by interrupting Wnt signaling and stimulating PPARgamma activity. These results provide novel insights into the role of ox-LDL in T2DM and NASH-associated hepatic fibrogenesis and mechanisms by which curcumin suppresses ox-LDL-induced HSC activation, as well as the implication of curcumin in the treatment of T2DM and NASH-associated hepatic fibrosis. Celý text článku | 19736547
|
Dietary soya protein during pregnancy and lactation in rats with hereditary kidney disease attenuates disease progression in offspring. Cahill, LE; Peng, CY; Bankovic-Calic, N; Sankaran, D; Ogborn, MR; Aukema, HM The British journal of nutrition
97
77-84
2007
Zobrazit abstrakt
Dietary soya protein substitution for casein initiated at weaning slows disease progression in animal models of chronic renal disease. As there is increasing evidence that fetal programming can have a significant impact on kidney physiology and function in offspring, the objective of the current study was to determine whether exposure to soya protein in the diet earlier than weaning would have further benefits. Han:SPRD-cy (cy/+) breeder rats were fed a casein-based or soya protein-based diet 2 weeks prior to mating, throughout pregnancy and during lactation. Following this maternal period, 3-week-old pups were given either the same or the alternate diet for a 7-week weaning period. Dietary soya protein compared with casein in the maternal or weaning period both independently resulted in less renal inflammation (macrophage infiltration lower by 24% (P=0.0003) and 32% (Pless than 0.001), respectively). When soya protein was given in both feeding periods, the effect was additive. Soya protein substitution for casein resulted in less oxidative damages as indicated by 28% lower oxidized-LDL staining (P=0.013) when present in the maternal period, or in the weaning period (by 56%, Pless than 0.0001). Renal cell proliferation was reduced by 29-33% (Pless than 0.05) in rats given soya protein whether the exposure was during the maternal or weaning period. Soya protein compared with casein in the maternal period also resulted in 33% (P=0.0013) less proteinuria, indicating superior renal function. Dietary soya protein during pregnancy and lactation represents a potential preventative approach in treating for those with congenital kidney diseases. | 17217562
|
Selective COX-2 inhibition markedly slows disease progression and attenuates altered prostanoid production in Han:SPRD-cy rats with inherited kidney disease. Deepa Sankaran, Neda Bankovic-Calic, Malcolm R Ogborn, Gary Crow, Harold M Aukema American journal of physiology. Renal physiology
293
F821-30
2007
Zobrazit abstrakt
Selective cyclooxygenase-2 (COX-2) inhibitors appear to have beneficial renoprotective effects in most, but not all, renal disease conditions. The objective of our study was to examine the effects of COX-2 inhibition in a rat model of polycystic kidney disease. Four-week-old Han:SPRD-cy rats were given a standard rodent diet containing NS-398 (3 mg.kg body wt(-1).day(-1)) or a control diet without NS-398 for 7 wk. In diseased rats, selective COX-2 inhibition resulted in 18% and 67% reduction in cystic expansion and interstitial fibrosis, respectively, but no change in renal function. NS-398 also ameliorated disease-associated pathologies, such as renal inflammation, cell proliferation, and oxidant injury (by 33, 38, and 59%, respectively). Kidney disease was associated with elevated renal COX-1 and COX-2 enzyme activities, and NS-398 blunted the increase in COX-2 enzyme activity (as indicated by 21 and 28% lower renal thromboxane B2 and PGE2 levels, respectively). NS-398 reduced urinary excretion of prostanoid metabolites in diseased rats. In summary, COX-2 inhibition attenuated renal injury, reduced the elevated renal COX-2 activity, and ameliorated disease-related alterations in prostanoid production in this rat model of chronic renal disease. | 17537981
|
Dietary flax oil during pregnancy and lactation retards disease progression in rat offspring with inherited kidney disease. Sankaran, D; Bankovic-Calic, N; Peng, CY; Ogborn, MR; Aukema, HM Pediatric research
60
729-33
2005
Zobrazit abstrakt
Dietary flax oil (FO) retards disease progression in growing or adult animal models of kidney disease. To determine whether dietary flax oil during the perinatal period would alter renal disease progression in offspring, Han-SPRD-cy rats with inherited cystic kidney disease were given diets with either 7% FO or corn oil (CO), throughout pregnancy and lactation. At 3 wk of age, offspring were then given either the same or the alternate diet for 7 wk. Rats given FO during the maternal period had 15% less renal cyst growth compared with rats given FO only in the postweaning period. Dietary FO, compared with CO, in the maternal period also resulted in 12% lower cell proliferation and 15% less oxidant injury in diseased kidneys of offspring. Including FO in both the maternal and postweaning period resulted in 29-34% less renal interstitial fibrosis and 22-23% lower glomerular hypertrophy. Along with improved histology, these rats exhibited 13% less proteinuria and 30% lower creatinine clearance when dietary FO was given in the maternal period. The potential for dietary FO during pregnancy and lactation to positively modulate adult renal disease has significant implications for the 1 in 1000 individuals with congenital cystic kidney disease. | 17065582
|
Modulation of renal injury in pcy mice by dietary fat containing n-3 fatty acids depends on the level and type of fat. Deepa Sankaran, Jing Lu, Neda Bankovic-Calic, Malcolm R Ogborn, Harold M Aukema Lipids
39
207-14
2004
Zobrazit abstrakt
Low-fat diets and diets containing n-3 fatty acids (FA) slow the progression of renal injury in the male Han:Sprague-Dawley (SPRD)-cy rat model of polycystic kidney disease. To determine whether these dietary fat effects are similar in females and in another model of renal cystic disease, in this study we used both male and female pcy mice to examine the effects of fat level and type on disease progression. Adult pcy mice were fed 4, 10, or 20 g soybean oil/100 g diet for 130 d in study 1. In study 2, weanling pcy mice were fed high or low levels of fat rich in 18:2n-6 (corn oil, CO), 18:3n-3 (flaxseed oil/CO 4:1 g/g, FO), or 22:6n-3 (algal oil/CO 4:1 g/g, DO) for 8 wk. In adult pcy mice, low- compared with high-fat diets lowered kidney weights (2.4 +/- 0.2 vs. 3.1 +/- 0.2 g/100 g body weight, P = 0.006) and serum urea nitrogen (SUN) (9.6 +/- 0.6 vs. 11.9 +/- 0.6 mmol/L, P = 0.009), whereas in young pcy mice it reduced renal fibrosis volumes (0.44 +/- 0.04 vs. 0.62 +/- 0.04 mL/kg body weight, P 0.0001). FO feeding in young pcy mice mitigated the detrimental effects of high fat on fibrosis while not altering kidney size, function, and oxidative damage when compared with the CO-fed mice. In contrast, DO- compared with CO-fed mice had higher kidney weights (2.64 +/- 0.07 vs. 2.24 +/- 0.08 g/100 g body weight, P = 0.005), SUN (9.4 +/- 0.57 vs. 7.0 +/- 0.62 mmol/L, P 0.0001), and cyst volumes (7.9 +/- 0.28 vs. 6.2 +/- 0.30 mL/kg body weight, P 0.0001) and similar levels of oxidative damage and fibrosis. The FA compositions of the diets were reflected in the kidneys: 18:2n-6, 18:3n-3, and 22:6n-3 were the highest in the CO, FO, and DO diets, respectively. Dietary effects on kidney disease progression were similar in males and females. A low-fat diet slows progression of renal injury in male and female pcy mice, consistent with findings in the male Han:SPRD-cy rat. Dietary fat type also influenced renal injury, with flaxseed oil diets rich in 18:3n-3 slowing early fibrosis progression compared with diets rich in 18:2n-6 or in 22:6n-3. | 15233398
|