ZiBuPiYin recipe protects db/db mice from diabetes-associated cognitive decline through improving multiple pathological changes. Chen, J; Liang, L; Zhan, L; Zhou, Y; Zheng, L; Sun, X; Gong, J; Sui, H; Jiang, R; Zhang, F; Zhang, L PloS one
9
e91680
2014
Zobrazit abstrakt
Multiple organ systems, including the brain, which undergoes changes that may increase the risk of cognitive decline, are adversely affected by diabetes mellitus (DM). Here, we demonstrate that type 2 diabetes mellitus (T2DM) db/db mice exhibited hippocampus-dependent memory impairment, which might associate with a reduction in dendritic spine density in the pyramidal neurons of brain, Aβ1-42 deposition in the prefrontal cortex (PFC) and hippocampus, and a decreased expression of neurostructural proteins including microtubule-associated protein (MAP2), a marker of dendrites, and postsynaptic density 95 (PSD95), a marker of excitatory synapses. To investigate the effects of the ZiBuPiYin recipe (ZBPYR), a traditional Chinese medicine recipe, on diabetes-related cognitive decline (DACD), db/db mice received daily administration of ZBPYR over an experimental period of 6 weeks. We then confirmed that ZBPYR rescued learning and memory performance impairments, reversed dendritic spine loss, reduced Aβ1-42 deposition and restored the expression levels of MAP2 and PSD95. The present study also revealed that ZBPYR strengthened brain leptin and insulin signaling and inhibited GSK3β overactivity, which may be the potential mechanism or underlying targets of ZBPYR. These findings conclude that ZBPYR prevents DACD, most likely by improving dendritic spine density and attenuating brain leptin and insulin signaling pathway injury. Our findings provide further evidence for the effects of ZBPYR on DACD. | 24614172
|
Phosphorylation of serine 1137/1138 of mouse insulin receptor substrate (IRS) 2 regulates cAMP-dependent binding to 14-3-3 proteins and IRS2 protein degradation. Neukamm, SS; Ott, J; Dammeier, S; Lehmann, R; Häring, HU; Schleicher, E; Weigert, C The Journal of biological chemistry
288
16403-15
2013
Zobrazit abstrakt
Insulin receptor substrate (IRS) 2 as intermediate docking platform transduces the insulin/IGF-1 (insulin like growth factor 1) signal to intracellular effector molecules that regulate glucose homeostasis, β-cell growth, and survival. Previously, IRS2 has been identified as a 14-3-3 interaction protein. 14-3-3 proteins can bind their target proteins via phosphorylated serine/threonine residues located within distinct motifs. In this study the binding of 14-3-3 to IRS2 upon stimulation with forskolin or the cAMP analog 8-(4-chlorophenylthio)-cAMP was demonstrated in HEK293 cells. Binding was reduced with PKA inhibitors H89 or Rp-8-Br-cAMPS. Phosphorylation of IRS2 on PKA consensus motifs was induced by forskolin and the PKA activator N(6)-Phe-cAMP and prevented by both PKA inhibitors. The amino acid region after position 952 on IRS2 was identified as the 14-3-3 binding region by GST-14-3-3 pulldown assays. Mass spectrometric analysis revealed serine 1137 and serine 1138 as cAMP-dependent, potential PKA phosphorylation sites. Mutation of serine 1137/1138 to alanine strongly reduced the cAMP-dependent 14-3-3 binding. Application of cycloheximide revealed that forskolin enhanced IRS2 protein stability in HEK293 cells stably expressing IRS2 as well as in primary hepatocytes. Stimulation with forskolin did not increase protein stability either in the presence of a 14-3-3 antagonist or in the double 1137/1138 alanine mutant. Thus the reduced IRS2 protein degradation was dependent on the interaction with 14-3-3 proteins and the presence of serine 1137/1138. We present serine 1137/1138 as novel cAMP-dependent phosphorylation sites on IRS2 and show their importance in 14-3-3 binding and IRS2 protein stability. | 23615913
|
Effect of IRS4 levels on PI 3-kinase signalling. Hoxhaj, G; Dissanayake, K; MacKintosh, C PloS one
8
e73327
2013
Zobrazit abstrakt
Insulin receptor substrate 1 (IRS1) and IRS2 are well-characterized adapter proteins that relay signals from receptor tyrosine kinases to downstream components of signalling pathways. In contrast, the function of IRS4 is not well understood. IRS4 overexpression has been associated with acute lymphoblastic leukaemia and subungual exostosis, while point mutations of IRS4 have been found in melanomas. Here, we show that while IRS4 expression is low in most cancer cell lines, IRS4 mRNA and protein levels are markedly elevated in certain cells including the NCI-H720, DMS114, HEK293T and HEK293AAV lines. Surprisingly, IRS4 expression was also strongly induced when HEK293 cells were infected with retroviral particles and selected under puromycin, making IRS4 expression a potential off-target effect of retroviral expression vectors. Cells with high expression of IRS4 displayed high phosphatidylinositol (3,4,5)-trisphosphate (PIP3) levels, as well as elevated Akt and p70 S6 kinase activities, even in the absence of growth factors. PI 3-kinase (PI3K) signalling in these cells depends on IRS4, even though these cells also express IRS1/2. Knockdown of IRS4 also inhibited cell proliferation in cells with high levels of IRS4. Together, these findings suggest IRS4 as a potential therapeutic target for cancers with high expression of this protein. | 24039912
|
Patterns of gene and metabolite define the effects of extracellular osmolality on kidney collecting duct. Hyo-Jung Choi,Yu-Jeong Yoon,Yong-Kook Kwon,Yu-Jung Lee,Sehyun Chae,Daehee Hwang,Geum-Sook Hwang,Tae-Hwan Kwon Journal of proteome research
11
2011
Zobrazit abstrakt
To investigate the effects of changes in extracellular osmolality on the function of kidney collecting duct cells, particularly on water and sodium reabsorption in the conditions of diuresis and antidiuresis, we generated transcriptome and metabolome profiles of primary cultured inner medullary collecting duct (IMCD) cells. They were grown in hyperosmolar culture medium (640 mOsm) for 4 days and then exposed to either reduced (300 mOsm) or same osmolality for 1 or 2 days more. Integrated analysis of the transcriptome and metabolome revealed that decreased extracellular osmolality was associated with decreased levels of organic osmolytes, glucose, intermediates of citric acid cycle, and branched-chain amino acids (BCAA) in IMCD cells, along with significantly decreased gene expression and protein abundance of P-type transporters (ATP1B1), ABC transporters (ABCC5 and ABCG1), and insulin signaling pathways (IRS2). Quantitative real-time RT-PCR and semiquantitative immunoblotting confirmed the changes of transcript levels of differentially expressed genes and protein levels. Taken together, integrated analysis of omics data demonstrated that water and sodium reabsorption could be reduced by decreased extracellular osmolality per se, through decreased levels of ABC transporters and IRS2, which play a potential role in the transport of organic osmolytes, BCAA, glucose, and trafficking of epithelial sodium channel. | 22686594
|