Glypican Is a Modulator of Netrin-Mediated Axon Guidance. Blanchette, CR; Perrat, PN; Thackeray, A; Bénard, CY PLoS biology
13
e1002183
2015
Zobrazit abstrakt
Netrin is a key axon guidance cue that orients axon growth during neural circuit formation. However, the mechanisms regulating netrin and its receptors in the extracellular milieu are largely unknown. Here we demonstrate that in Caenorhabditis elegans, LON-2/glypican, a heparan sulfate proteoglycan, modulates UNC-6/netrin signaling and may do this through interactions with the UNC-40/DCC receptor. We show that developing axons misorient in the absence of LON-2/glypican when the SLT-1/slit guidance pathway is compromised and that LON-2/glypican functions in both the attractive and repulsive UNC-6/netrin pathways. We find that the core LON-2/glypican protein, lacking its heparan sulfate chains, and secreted forms of LON-2/glypican are functional in axon guidance. We also find that LON-2/glypican functions from the epidermal substrate cells to guide axons, and we provide evidence that LON-2/glypican associates with UNC-40/DCC receptor-expressing cells. We propose that LON-2/glypican acts as a modulator of UNC-40/DCC-mediated guidance to fine-tune axonal responses to UNC-6/netrin signals during migration. | | | 26148345
|
Erythropoietin produced by genetic-modified NIH/3T3 fibroblasts enhances the survival of degenerating neurons. Li, YC; Chen, SJ; Chien, CL Brain and behavior
5
e00356
2015
Zobrazit abstrakt
Erythropoietin (EPO) has potent neuroprotective effects. The short-term delivery of high-dose EPO seemed to improve patients' neuromuscular functions; however, excessive EPO resulted in systematically high hematocrit and thrombotic risk. In our study, we established a cellular material for future in vivo studies of neurodegenerative diseases based on EPO provided regionally at a nontoxic level.A mouse EPO cDNA was subcloned into the pCMS-EGFP vector and transfected into NIH/3T3 fibroblasts to design a biological provider that can regionally release EPO for the treatment of neurological diseases. After G418 selection, a stable EPO-overexpressing cell line, EPO-3T3-EGFP, was established. To further confirm the neuroprotective abilities of secreted EPO from EPO-3T3-EGFP cells, a cell model of neurodegeneration, PC12-INT-EGFP, was applied.The expression level of EPO was highly elevated in EPO-3T3-EGFP cells, and an abundant amount of EPO secreted from EPO-3T3-EGFP cells was detected in the extracellular milieu. After supplementation with conditioned medium prepared from EPO-3T3-EGFP cells, the survival rate of PC12-INT-EGFP cells was significantly enhanced. Surprisingly, a fraction of aggregated cytoskeletal EGFP-tagged α-internexin in PC12-INT-EGFP cells was disaggregated and transported into neurites dynamically. The immunocytochemical distribution of IF proteins, including NF-M, phosphorylated-NF-M, and the α-INT-EGFP fusion protein, were less aggregated in the perikaryal region and transported into neurites after the EPO treatment.The established EPO-overexpressing NIH/3T3 cell line, EPO-3T3-EGFP, may provide a material for future studies of cell-based therapies for neurodegenerative diseases via the secretion of EPO on a short-term, high-dose, regional basis. | | | 26357589
|
Transplantation of neural stem cells clonally derived from embryonic stem cells promotes recovery after murine spinal cord injury. Salewski, RP; Mitchell, RA; Shen, C; Fehlings, MG Stem cells and development
24
36-50
2015
Zobrazit abstrakt
The pathology of spinal cord injury (SCI) makes it appropriate for cell-based therapies. Treatments using neural stem cells (NSCs) in animal models of SCI have shown positive outcomes, although uncertainty remains regarding the optimal cell source. Pluripotent cell sources such as embryonic stem cells (ESCs) provide a limitless supply of therapeutic cells. NSCs derived using embryoid bodies (EB) from ESCs have shown tumorigenic potential. Clonal neurosphere generation is an alternative method to generate safer and more clinically relevant NSCs without the use of an EB stage for use in cell-based therapies. We generated clonally derived definitive NSCs (dNSCs) from ESC. These cells were transplanted into a mouse thoracic SCI model. Embryonic stem cell-derived definitive neural stem cell (ES-dNSC)-transplanted mice were compared with controls using behavioral measures and histopathological analysis of tissue. In addition, the role of remyelination in injury recovery was investigated using transmission electron microscopy. The SCI group that received ES-dNSC transplantation showed significant improvements in locomotor function compared with controls in open field and gait analysis. The cell treatment group had a significant enhancement of spared neural tissue. Immunohistological assessments showed that dNSCs differentiated primarily to oligodendrocytes. These cells were shown to express myelin basic protein, associate with axons, and support nodal architecture as well as display proper compact, multilayer myelination in electron microscopic analysis. This study provides strong evidence that dNSCs clonally derived from pluripotent cells using the default pathway of neuralization improve motor function after SCI and enhance sparing of neural tissue, while remaining safe and clinically relevant. | | | 25119334
|
Diversity and overlap of parvalbumin and somatostatin expressing interneurons in mouse presubiculum. Nassar, M; Simonnet, J; Lofredi, R; Cohen, I; Savary, E; Yanagawa, Y; Miles, R; Fricker, D Frontiers in neural circuits
9
20
2015
Zobrazit abstrakt
The presubiculum, located between hippocampus and entorhinal cortex, plays a fundamental role in representing spatial information, notably head direction. Little is known about GABAergic interneurons of this region. Here, we used three transgenic mouse lines, Pvalb-Cre, Sst-Cre, and X98, to examine distinct interneurons labeled with tdTomato or green fluorescent protein. The distribution of interneurons in presubicular lamina for each animal line was compared to that in the GAD67-GFP knock-in animal line. Labeling was specific in the Pvalb-Cre line with 87% of labeled interneurons immunopositive for parvalbumin (PV). Immunostaining for somatostatin (SOM) revealed good specificity in the X98 line with 89% of fluorescent cells, but a lesser specificity in Sst-Cre animals where only 71% of labeled cells were immunopositive. A minority of ∼6% of interneurons co-expressed PV and SOM in the presubiculum of Sst-Cre animals. The electrophysiological and morphological properties of fluorescent interneurons from Pvalb-Cre, Sst-Cre, and X98 mice differed. Distinct physiological groups of presubicular interneurons were resolved by unsupervised cluster analysis of parameters describing passive properties, firing patterns and AP shapes. One group consisted of SOM-positive, Martinotti type neurons with a low firing threshold (cluster 1). Fast spiking basket cells, mainly from the Pvalb-Cre line, formed a distinct group (cluster 3). Another group (cluster 2) contained interneurons of intermediate electrical properties and basket-cell like morphologies. These labeled neurons were recorded from both Sst-Cre and Pvalb-Cre animals. Thus, our results reveal a wide variation in anatomical and physiological properties for these interneurons, a real overlap of interneurons immuno-positive for both PV and SOM as well as an off-target recombination in the Sst-Cre line, possibly linked to maternal cre inheritance. | | | 26005406
|
A novel fragile X syndrome mutation reveals a conserved role for the carboxy-terminus in FMRP localization and function. Okray, Z; de Esch, CE; Van Esch, H; Devriendt, K; Claeys, A; Yan, J; Verbeeck, J; Froyen, G; Willemsen, R; de Vrij, FM; Hassan, BA EMBO molecular medicine
7
423-37
2015
Zobrazit abstrakt
Loss of function of the FMR1 gene leads to fragile X syndrome (FXS), the most common form of intellectual disability. The loss of FMR1 function is usually caused by epigenetic silencing of the FMR1 promoter leading to expansion and subsequent methylation of a CGG repeat in the 5' untranslated region. Very few coding sequence variations have been experimentally characterized and shown to be causal to the disease. Here, we describe a novel FMR1 mutation and reveal an unexpected nuclear export function for the C-terminus of FMRP. We screened a cohort of patients with typical FXS symptoms who tested negative for CGG repeat expansion in the FMR1 locus. In one patient, we identified a guanine insertion in FMR1 exon 15. This mutation alters the open reading frame creating a short novel C-terminal sequence, followed by a stop codon. We find that this novel peptide encodes a functional nuclear localization signal (NLS) targeting the patient FMRP to the nucleolus in human cells. We also reveal an evolutionarily conserved nuclear export function associated with the endogenous C-terminus of FMRP. In vivo analyses in Drosophila demonstrate that a patient-mimetic mutation alters the localization and function of Dfmrp in neurons, leading to neomorphic neuronal phenotypes. | | | 25693964
|
Neuroprotective effects of oligodendrocyte progenitor cell transplantation in premature rat brain following hypoxic-ischemic injury. Chen, LX; Ma, SM; Zhang, P; Fan, ZC; Xiong, M; Cheng, GQ; Yang, Y; Qiu, ZL; Zhou, WH; Li, J PloS one
10
e0115997
2015
Zobrazit abstrakt
Periventricular leukomalacia (PVL) is a common ischemic brain injury in premature infants for which there is no effective treatment. The objective of this study was to determine whether transplanted mouse oligodendrocyte progenitor cells (OPCs) have neuroprotective effects in a rat model of PVL. Hypoxia-ischemia (HI) was induced in 3-day-old rat pups by left carotid artery ligation, followed by exposure to 6% oxygen for 2.5 h. Animals were assigned to OPC transplantation or sham control groups and injected with OPCs or PBS, respectively, and sacrificed up to 6 weeks later for immunohistochemical analysis to investigate the survival and differentiation of transplanted OPCs. Apoptosis was evaluated by double immunolabeling of brain sections for caspase-3 and neuronal nuclei (NeuN), while proliferation was assessed using a combination of anti-Nestin and -bromodeoxyuridine antibodies. The expression of brain-derived neurotrophic factor (BDNF) and Bcl-2 was examined 7 days after OPC transplantation. The Morris water maze was used to test spatial learning and memory. The results showed that transplanted OPCs survived and formed a myelin sheath, and stimulated BDNF and Bcl-2 expression and the proliferation of neural stem cells (NSC), while inhibiting HI-induced neuronal apoptosis relative to control animals. Moreover, deficits in spatial learning and memory resulting from HI were improved by OPC transplantation. These results demonstrate an important neuroprotective role for OPCs that can potentially be exploited in cell-based therapeutic approaches to minimize HI-induced brain injury. | | | 25790286
|
Progerin expression disrupts critical adult stem cell functions involved in tissue repair. Pacheco, LM; Gomez, LA; Dias, J; Ziebarth, NM; Howard, GA; Schiller, PC Aging
6
1049-63
2014
Zobrazit abstrakt
Vascular disease is one of the leading causes of death worldwide. Vascular repair, essential for tissue maintenance, is critically reduced during vascular disease and aging. Efficient vascular repair requires functional adult stem cells unimpaired by aging or mutation. One protein candidate for reducing stem cell?mediated vascular repair is progerin, an alternative splice variant of lamin A. Progerin results from erroneous activation of cryptic splice sites within the LMNA gene, and significantly increases during aging. Mutations triggering progerin overexpression cause the premature aging disorder Hutchinson-Gilford Progeria Syndrome (HGPS), in which patients die at approximately 13-years of age due to atherosclerosis-induced disease. Progerin expression affects tissues rich in cells that can be derived from marrow stromal cells (MSCs. Studies using various MSC subpopulations and models have led to discrepant results. Using a well-defined, immature subpopulation of MSCs, Marrow Isolated Adult Multilineage Inducible (MIAMI) cells, we find progerin significantly disrupts expression and localization of self-renewal markers, proliferation, migration, and membrane elasticity. One potential treatment, farnesyltransferase inhibitor, ameliorates some of these effects. Our results confirm proposed progerin-induced mechanisms and suggest novel ways in which progerin disturbs critical stem cell functions collectively required for proper tissue repair, offering promising treatment targets for future therapies. | Western Blotting | | 25567453
|
The serotonin 6 receptor controls neuronal migration during corticogenesis via a ligand-independent Cdk5-dependent mechanism. Jacobshagen, M; Niquille, M; Chaumont-Dubel, S; Marin, P; Dayer, A Development (Cambridge, England)
141
3370-7
2014
Zobrazit abstrakt
The formation of a laminar structure such as the mammalian neocortex relies on the coordinated migration of different subtypes of excitatory pyramidal neurons in specific layers. Cyclin-dependent kinase 5 (Cdk5) is a master regulator of pyramidal neuron migration. Recently, we have shown that Cdk5 binds to the serotonin 6 receptor (5-HT6R), a G protein-coupled receptor (GPCR). Here, we investigated the role of 5-HT6R in the positioning and migration of pyramidal neurons during mouse corticogenesis. We report that constitutive expression of 5-HT6R controls pyramidal neuron migration through an agonist-independent mechanism that requires Cdk5 activity. These data provide the first in vivo evidence of a role for constitutive activity at a GPCR in neocortical radial migration. | Immunohistochemistry | | 25078650
|
In situ three-dimensional reconstruction of mouse heart sympathetic innervation by two-photon excitation fluorescence imaging. Freeman, K; Tao, W; Sun, H; Soonpaa, MH; Rubart, M Journal of neuroscience methods
221
48-61
2014
Zobrazit abstrakt
Sympathetic nerve wiring in the mammalian heart has remained largely unexplored. Resolving the wiring diagram of the cardiac sympathetic network would help establish the structural underpinnings of neurocardiac coupling.We used two-photon excitation fluorescence microscopy, combined with a computer-assisted 3-D tracking algorithm, to map the local sympathetic circuits in living hearts from adult transgenic mice expressing enhanced green fluorescent protein (EGFP) in peripheral adrenergic neurons.Quantitative co-localization analyses confirmed that the intramyocardial EGFP distribution recapitulated the anatomy of the sympathetic arbor. In the left ventricular subepicardium of the uninjured heart, the sympathetic network was composed of multiple subarbors, exhibiting variable branching and looping topology. Axonal branches did not overlap with each other within their respective parental subarbor nor with neurites of annexed subarbors. The sympathetic network in the border zone of a 2-week-old myocardial infarction was characterized by substantive rewiring, which included spatially heterogeneous loss and gain of sympathetic fibers and formation of multiple, predominately nested, axon loops of widely variable circumference and geometry.In contrast to mechanical tissue sectioning methods that may involve deformation of tissue and uncertainty in registration across sections, our approach preserves continuity of structure, which allows tracing of neurites over distances, and thus enables derivation of the three-dimensional and topological morphology of cardiac sympathetic nerves.Our assay should be of general utility to unravel the mechanisms governing sympathetic axon spacing during development and disease. | | | 24056230
|
Dopamine neurons control striatal cholinergic neurons via regionally heterogeneous dopamine and glutamate signaling. Chuhma, N; Mingote, S; Moore, H; Rayport, S Neuron
81
901-12
2014
Zobrazit abstrakt
Midbrain dopamine neurons fire in bursts conveying salient information. Bursts are associated with pauses in tonic firing of striatal cholinergic interneurons. Although the reciprocal balance of dopamine and acetylcholine in the striatum is well known, how dopamine neurons control cholinergic neurons has not been elucidated. Here, we show that dopamine neurons make direct fast dopaminergic and glutamatergic connections with cholinergic interneurons, with regional heterogeneity. Dopamine neurons drive a burst-pause firing sequence in cholinergic interneurons in the medial shell of the nucleus accumbens, mixed actions in the accumbens core, and a pause in the dorsal striatum. This heterogeneity is due mainly to regional variation in dopamine-neuron glutamate cotransmission. A single dose of amphetamine attenuates dopamine neuron connections to cholinergic interneurons with dose-dependent regional specificity. Overall, the present data indicate that dopamine neurons control striatal circuit function via discrete, plastic connections with cholinergic interneurons. | Immunohistochemistry | | 24559678
|