A mouse model of human primitive neuroectodermal tumors resulting from microenvironmentally-driven malignant transformation of orthotopically transplanted radial glial cells. Malchenko, S; Sredni, ST; Hashimoto, H; Kasai, A; Nagayasu, K; Xie, J; Margaryan, NV; Seiriki, K; Lulla, RR; Seftor, RE; Pachman, LM; Meltzer, HY; Hendrix, MJ; Soares, MB PloS one
10
e0121707
2015
Zobrazit abstrakt
There is growing evidence and a consensus in the field that most pediatric brain tumors originate from stem cells, of which radial glial cells constitute a subtype. Here we show that orthotopic transplantation of human radial glial (RG) cells to the subventricular zone of the 3rd ventricle--but not to other transplantation sites--of the brain in immunocompromised NOD-SCID mice, gives rise to tumors that have the hallmarks of CNS primitive neuroectodermal tumors (PNETs). The resulting mouse model strikingly recapitulates the phenotype of PNETs. Importantly, the observed tumorigenic transformation was accompanied by aspects of an epithelial to mesenchymal transition (EMT)-like process. It is also noteworthy that the tumors are highly invasive, and that they effectively recruit mouse endothelial cells for angiogenesis. These results are significant for several reasons. First, they show that malignant transformation of radial glial cells can occur in the absence of specific mutations or inherited genomic alterations. Second, they demonstrate that the same radial glial cells may either give rise to brain tumors or differentiate normally depending upon the microenvironment of the specific region of the brain to which the cells are transplanted. In addition to providing a prospect for drug screening and development of new therapeutic strategies, the resulting mouse model of PNETs offers an unprecedented opportunity to identify the cancer driving molecular alterations and the microenvironmental factors that are responsible for committing otherwise normal radial glial cells to a malignant phenotype. | Immunohistochemistry | 25826270
|
Sox9 is critical for suppression of neurogenesis but not initiation of gliogenesis in the cerebellum. Vong, KI; Leung, CK; Behringer, RR; Kwan, KM Molecular brain
8
25
2015
Zobrazit abstrakt
The high mobility group (HMG) family transcription factor Sox9 is critical for induction and maintenance of neural stem cell pool in the central nervous system (CNS). In the spinal cord and retina, Sox9 is also the master regulator that defines glial fate choice by mediating the neurogenic-to-gliogenic fate switch. On the other hand, the genetic repertoire governing the maintenance and fate decision of neural progenitor pool in the cerebellum has remained elusive.By employing the Cre/loxP strategy, we specifically inactivated Sox9 in the mouse cerebellum. Unexpectedly, the self-renewal capacity and multipotency of neural progenitors at the cerebellar ventricular zone (VZ) were not perturbed upon Sox9 ablation. Instead, the mutants exhibited an increased number of VZ-derived neurons including Purkinje cells and GABAergic interneurons. Simultaneously, we observed continuous neurogenesis from Sox9-null VZ at late gestation, when normally neurogenesis ceases to occur and gives way for gliogenesis. Surprisingly, glial cell specification was not affected upon Sox9 ablation.Our findings suggest Sox9 may mediate the neurogenic-to-gliogenic fate switch in mouse cerebellum by modulating the termination of neurogenesis, and therefore indicate a functional discrepancy of Sox9 between the development of cerebellum and other major neural tissues. | | 25888505
|
Activation of Sonic hedgehog signaling in neural progenitor cells promotes glioma development in the zebrafish optic pathway. Ju, B; Chen, W; Spitsbergen, JM; Lu, J; Vogel, P; Peters, JL; Wang, YD; Orr, BA; Wu, J; Henson, HE; Jia, S; Parupalli, C; Taylor, MR Oncogenesis
3
e96
2014
Zobrazit abstrakt
Dysregulation of Sonic hedgehog (Shh) signaling has been implicated in glioma pathogenesis. Yet, the role of this pathway in gliomagenesis remains controversial because of the lack of relevant animal models. Using the cytokeratin 5 promoter, we ectopically expressed a constitutively active zebrafish Smoothened (Smoa1) in neural progenitor cells and analyzed tumorigenic capacity of activated Shh signaling in both transient and stable transgenic fish. Transient transgenic fish overexpressing Smoa1 developed retinal and brain tumors, suggesting smoa1 is oncogenic in the zebrafish central nervous system (CNS). We further established stable transgenic lines that simultaneously developed optic pathway glioma (OPG) and various retinal tumors. In one of these lines, up to 80% of F1 and F2 fish developed tumors within 1 year of age. Microarray analysis of tumor samples showed upregulated expression of genes involved in the cell cycle, cancer signaling and Shh downstream targets ptc1, gli1 and gli2a. Tumors also exhibited specific gene signatures characteristic of radial glia and progenitor cells as transcriptions of radial glia genes cyp19a1b, s100β, blbp, gfap and the stem/progenitor genes nestin and sox2 were significantly upregulated. Overexpression of GFAP, S100β, BLBP and Sox2 was confirmed by immunofluorescence. We also detected overexpression of Mdm2 throughout the optic pathway in fish with OPG, therefore implicating the Mdm2-Tp53 pathway in glioma pathogenesis. In conclusion, we demonstrate that activated Shh signaling initiates tumorigenesis in the zebrafish CNS and provide the first OPG model not associated with neurofibromatosis 1. | | 24686726
|
Loss of Usp9x disrupts cortical architecture, hippocampal development and TGFβ-mediated axonogenesis. Stegeman, S; Jolly, LA; Premarathne, S; Gecz, J; Richards, LJ; Mackay-Sim, A; Wood, SA PloS one
8
e68287
2013
Zobrazit abstrakt
The deubiquitylating enzyme Usp9x is highly expressed in the developing mouse brain, and increased Usp9x expression enhances the self-renewal of neural progenitors in vitro. USP9X is a candidate gene for human neurodevelopmental disorders, including lissencephaly, epilepsy and X-linked intellectual disability. To determine if Usp9x is critical to mammalian brain development we conditionally deleted the gene from neural progenitors, and their subsequent progeny. Mating Usp9x(loxP/loxP) mice with mice expressing Cre recombinase from the Nestin promoter deleted Usp9x throughout the entire brain, and resulted in early postnatal lethality. Although the overall brain architecture was intact, loss of Usp9x disrupted the cellular organization of the ventricular and sub-ventricular zones, and cortical plate. Usp9x absence also led to dramatic reductions in axonal length, in vivo and in vitro, which could in part be explained by a failure in Tgf-β signaling. Deletion of Usp9x from the dorsal telencephalon only, by mating with Emx1-cre mice, was compatible with survival to adulthood but resulted in reduction or loss of the corpus callosum, a dramatic decrease in hippocampal size, and disorganization of the hippocampal CA3 region. This latter phenotypic aspect resembled that observed in Doublecortin knock-out mice, which is an Usp9x interacting protein. This study establishes that Usp9x is critical for several aspects of CNS development, and suggests that its regulation of Tgf-β signaling extends to neurons. | | 23861879
|
Lithium reduced neural progenitor apoptosis in the hippocampus and ameliorated functional deficits after irradiation to the immature mouse brain. Kaiming Huo,Yanyan Sun,Hongfu Li,Xiaonan Du,Xiaoyang Wang,Niklas Karlsson,Changlian Zhu,Klas Blomgren Molecular and cellular neurosciences
51
2011
Zobrazit abstrakt
Lithium was recently shown to inhibit apoptosis and promote survival of neural progenitor cells after hypoxia-ischemia in the immature rat brain. Our aim was to evaluate the effects of lithium on cell death and proliferation in the hippocampus after irradiation (IR) to the immature brain. Male mice were injected with 2mmol/kg lithium chloride i.p. on postnatal day 9 (P9) and additional lithium injections, 1mmol/kg, were administered at 24h intervals for up to 7days. BrdU was injected 4h after lithium injections on P9 and P10. The left hemisphere received a single dose of 8Gy (MV photons) on P11. The animals were euthanized 6h or 7weeks after IR. The number of BrdU-labeled cells in the subgranular zone (SGZ) of the granule cell layer (GCL) 6h after IR was 24% higher in the lithium-treated mice. The number of proliferating, phospho-histone H3-positive cells in the SGZ 7weeks after IR was 59% higher in the lithium group, so the effect was long-lasting. The number of apoptotic cells in the SGZ 6h after IR was lower in the lithium group, as judged by 3 different parameters, pyknosis, staining for active caspase-3 and TUNEL. Newly formed cells (BrdU-labeled 1 or 2days before IR) showed the greatest degree of protection, as judged by 50% fewer TUNEL-positive cells, whereas non-BrdU-labeled cells showed 38% fewer TUNEL-positive cells 6h after IR. Consequently, the growth retardation of the GCL was less pronounced in the lithium group. The number and size of microglia in the DG were also lower in the lithium group, indicating reduced inflammation. Learning was facilitated after lithium treatment, as judged by improved context-dependent fear conditioning, and improved place learning, as judged by assessment in the IntelliCage platform. In summary, lithium administration could decrease IR-induced neural progenitor cell apoptosis in the GCL of the hippocampus and ameliorate learning impairments. It remains to be shown if lithium can be used to prevent the debilitating cognitive late effects seen in children treated with cranial radiotherapy. | | 22800605
|
Apoptosis-inducing factor downregulation increased neuronal progenitor, but not stem cell, survival in the neonatal hippocampus after cerebral hypoxia-ischemia. Sun, Y; Zhang, Y; Wang, X; Blomgren, K; Zhu, C Molecular neurodegeneration
7
17
2011
Zobrazit abstrakt
A considerable proportion of all newly generated cells in the hippocampus will die before becoming fully differentiated, both under normal and pathological circumstances. The caspase-independent apoptosis-inducing factor (AIF) has not been investigated previously in this context.Postnatal day 8 (P8) harlequin (Hq) mutant mice, expressing lower levels of AIF, and wild type littermates were injected with BrdU once daily for two days to label newborn cells. On P10 mice were subjected to hypoxia-ischemia (HI) and their brains were analyzed 4 h, 24 h or 4 weeks later. Overall tissue loss was 63.5% lower in Hq mice 4 weeks after HI. Short-term survival (4 h and 24 h) of labeled cells in the subgranular zone was neither affected by AIF downregulation, nor by HI. Long-term (4 weeks) survival of undifferentiated, BLBP-positive stem cells was reduced by half after HI, but this was not changed by AIF downregulation. Neurogenesis, however, as judged by BrdU/NeuN double labeling, was reduced by half after HI in wild type mice but preserved in Hq mice, indicating that primarily neural progenitors and neurons were protected. A wave of cell death started early after HI in the innermost layers of the granule cell layer (GCL) and moved outward, such that 24 h after HI dying cells could be detected in the entire GCL.These findings demonstrate that AIF downregulation provides not only long-term overall neuroprotection after HI, but also protects neural progenitor cells, thereby rescuing hippocampal neurogenesis. | | 22534064
|
IKKβ/NF-κB disrupts adult hypothalamic neural stem cells to mediate a neurodegenerative mechanism of dietary obesity and pre-diabetes. Li, J; Tang, Y; Cai, D Nature cell biology
14
999-1012
2011
Zobrazit abstrakt
Adult neural stem cells (NSCs) are known to exist in a few regions of the brain; however, the entity and physiological/disease relevance of adult hypothalamic NSCs (htNSCs) remain unclear. This work shows that adult htNSCs are multipotent and predominantly present in the mediobasal hypothalamus of adult mice. Chronic high-fat-diet feeding led to not only depletion but also neurogenic impairment of htNSCs associated with IKKβ/NF-κB activation. In vitro htNSC models demonstrated that their survival and neurogenesis markedly decreased on IKKβ/NF-κB activation but increased on IKKβ/NF-κB inhibition, mechanistically mediated by IKKβ/NF-κB-controlled apoptosis and Notch signalling. Mouse studies revealed that htNSC-specific IKKβ/NF-κB activation led to depletion and impaired neuronal differentiation of htNSCs, and ultimately the development of obesity and pre-diabetes. In conclusion, adult htNSCs are important for the central regulation of metabolic physiology, and IKKβ/NF-κB-mediated impairment of adult htNSCs is a critical neurodegenerative mechanism for obesity and related diabetes. | Immunofluorescence | 22940906
|