Irinotecan treatment and senescence failure promote the emergence of more transformed and invasive cells that depend on anti-apoptotic Mcl-1. Jonchère, B; Vétillard, A; Toutain, B; Lam, D; Bernard, AC; Henry, C; De Carné Trécesson, S; Gamelin, E; Juin, P; Guette, C; Coqueret, O Oncotarget
6
409-26
2015
Zobrazit abstrakt
Induction of senescence by chemotherapy was initially characterized as a suppressive response that prevents tumor cell proliferation. However, in response to treatment, it is not really known how cells can survive senescence and how irreversible this pathway is. In this study, we analyzed cell escape in response to irinotecan, a first line treatment used in colorectal cancer that induced senescence. We detected subpopulations of cells that adapted to chemotherapy and resumed proliferation. Survival led to the emergence of more transformed cells that induced tumor formation in mice and grew in low adhesion conditions. A significant amount of viable polyploid cells was also generated following irinotecan failure. Markers such as lgr5, CD44, CD133 and ALDH were downregulated in persistent clones, indicating that survival was not associated with an increase in cancer initiating cells. Importantly, malignant cells which resisted senescence relied on survival pathways induced by Mcl-1 signaling and to a lesser extent by Bcl-xL. Depletion of Mcl-1 increased irinotecan efficiency, induced the death of polyploid cells, prevented cell emergence and inhibited growth in low-adhesion conditions. We therefore propose that Mcl-1 targeting should be considered in the future to reduce senescence escape and to improve the treatment of irinotecan-refractory colorectal cancers. | Western Blotting | 25565667
|
The BH3 mimetic ABT-263 synergizes with the MEK1/2 inhibitor selumetinib/AZD6244 to promote BIM-dependent tumour cell death and inhibit acquired resistance. Sale, MJ; Cook, SJ The Biochemical journal
450
285-94
2013
Zobrazit abstrakt
Tumour cells typically exhibit a G(1) cell cycle arrest in response to the MEK1/2 [mitogen-activated protein kinase/ERK (extracellular-signal-regulated kinase) kinase 1/2] inhibitor selumetinib, but do not die, and thus they acquire resistance. In the present study we examined the effect of combining selumetinib with the BH3 [BCL2 (B-cell lymphoma 2) homology domain 3]-mimetic BCL2 inhibitor ABT-263. Although either drug alone caused little tumour cell death, the two agents combined to cause substantial caspase-dependent cell death and inhibit long-term clonogenic survival of colorectal cancer and melanoma cell lines with BRAF(V600E) or RAS mutations. This cell death absolutely required BAX (BCL2-associated X protein) and was inhibited by RNAi (RNA interference)-mediated knockdown of BIM (BCL2-interacting mediator of cell death) in the BRAF(V600E)-positive COLO205 cell line. When colorectal cancer cell lines were treated with selumetinib plus ABT-263 we observed a striking reduction in the incidence of cells emerging with acquired resistance to selumetinib. Similar results were observed when we combined ABT-263 with the BRAF(V600E)-selective inhibitor PLX4720, but only in cells expressing BRAF(V600E). Finally, cancer cells in which acquired resistance to selumetinib arises through BRAF(V600E) amplification remained sensitive to ABT-263, whereas selumetinib-resistant HCT116 cells (KRAS(G13D) amplification) were cross-resistant to ABT-263. Thus the combination of a BCL2 inhibitor and an ERK1/2 pathway inhibitor is synthetic lethal in ERK1/2-addicted tumour cells, delays the onset of acquired resistance and in some cases overcomes acquired resistance to selumetinib. | | 23234544
|
Regulation of cell survival by sphingosine-1-phosphate receptor S1P1 via reciprocal ERK-dependent suppression of Bim and PI-3-kinase/protein kinase C-mediated upregulation of Mcl-1. Rutherford, C; Childs, S; Ohotski, J; McGlynn, L; Riddick, M; MacFarlane, S; Tasker, D; Pyne, S; Pyne, NJ; Edwards, J; Palmer, TM Cell death & disease
4
e927
2013
Zobrazit abstrakt
Although the ability of bioactive lipid sphingosine-1-phosphate (S1P) to positively regulate anti-apoptotic/pro-survival responses by binding to S1P1 is well known, the molecular mechanisms remain unclear. Here we demonstrate that expression of S1P1 renders CCL39 lung fibroblasts resistant to apoptosis following growth factor withdrawal. Resistance to apoptosis was associated with attenuated accumulation of pro-apoptotic BH3-only protein Bim. However, although blockade of extracellular signal-regulated kinase (ERK) activation could reverse S1P1-mediated suppression of Bim accumulation, inhibition of caspase-3 cleavage was unaffected. Instead S1P1-mediated inhibition of caspase-3 cleavage was reversed by inhibition of phosphatidylinositol-3-kinase (PI3K) and protein kinase C (PKC), which had no effect on S1P1 regulation of Bim. However, S1P1 suppression of caspase-3 was associated with increased expression of anti-apoptotic protein Mcl-1, the expression of which was also reduced by inhibition of PI3K and PKC. A role for the induction of Mcl-1 in regulating endogenous S1P receptor-dependent pro-survival responses in human umbilical vein endothelial cells was confirmed using S1P receptor agonist FTY720-phosphate (FTY720P). FTY720P induced a transient accumulation of Mcl-1 that was associated with a delayed onset of caspase-3 cleavage following growth factor withdrawal, whereas Mcl-1 knockdown was sufficient to enhance caspase-3 cleavage even in the presence of FTY720P. Consistent with a pro-survival role of S1P1 in disease, analysis of tissue microarrays from ER(+) breast cancer patients revealed a significant correlation between S1P1 expression and tumour cell survival. In these tumours, S1P1 expression and cancer cell survival were correlated with increased activation of ERK, but not the PI3K/PKB pathway. In summary, pro-survival/anti-apoptotic signalling from S1P1 is intimately linked to its ability to promote the accumulation of pro-survival protein Mcl-1 and downregulation of pro-apoptotic BH3-only protein Bim via distinct signalling pathways. However, the functional importance of each pathway is dependent on the specific cellular context. | | 24263101
|
Mitochondrial Bcl-2 family dynamics define therapy response and resistance in neuroblastoma. Goldsmith, KC; Gross, M; Peirce, S; Luyindula, D; Liu, X; Vu, A; Sliozberg, M; Guo, R; Zhao, H; Reynolds, CP; Hogarty, MD Cancer research
72
2565-77
2011
Zobrazit abstrakt
Neuroblastoma is a childhood tumor in which transient therapeutic responses are typically followed by recurrence with lethal chemoresistant disease. In this study, we characterized the apoptotic responses in diverse neuroblastomas using an unbiased mitochondrial functional assay. We defined the apoptotic set point of neuroblastomas using responses to distinct BH3 death domains providing a BH3 response profile and directly confirmed survival dependencies. We found that viable neuroblastoma cells and primary tumors are primed for death with tonic sequestration of Bim, a direct activator of apoptosis, by either Bcl-2 or Mcl-1, providing a survival dependency that predicts the activity of Bcl-2 antagonists. The Bcl-2/Bcl-xL/Bcl-w inhibitor ABT-737 showed single-agent activity against only Bim:Bcl-2 primed tumor xenografts. Durable complete regressions were achieved in combination with noncurative chemotherapy even for highest risk molecular subtypes with MYCN amplification and activating ALK mutations. Furthermore, the use of unique isogenic cell lines from patients at diagnosis and at the time of relapse showed that therapy resistance was not mediated by upregulation of Bcl-2 homologues or loss of Bim priming, but by repressed Bak/Bax activation. Together, our findings provide a classification system that identifies tumors with clinical responses to Bcl-2 antagonists, defines Mcl-1 as the principal mediator of Bcl-2 antagonist resistance at diagnosis, and isolates the therapy resistant phenotype to the mitochondria. | | 22589275
|
Heterogeneous intrastriatal pattern of proteins regulating axon growth in normal adult human brain. Tong, J; Furukawa, Y; Sherwin, A; Hornykiewicz, O; Kish, SJ Neurobiology of disease
41
458-68
2010
Zobrazit abstrakt
There is much controversy regarding the extent of axon regeneration/sprouting ability in adult human brain. However, intrinsic differences in axon/neurite growth capability amongst striatal (caudate, putamen, nucleus accumbens) subdivisions could conceivably underlie, in part, their differential vulnerability in degenerative human brain disorders. To establish whether the distribution of axon growth markers in mature human striatum might be uniform or heterogeneous, we measured the intra-striatal pattern, in autopsied brain of normal subjects (n=40, age 18-99), of proteins involved in regulating axon growth. These proteins included polysialylated neural cell adhesion molecule (PSA-NCAM), microtubule-associated proteins TUC-4 (TOAD/Ulip/CRAMP-4) and doublecortin (DCX), and Bcl-2. The distribution of the marker proteins within the striatum was heterogeneous and inversely related to the pattern of dopamine loss previously characterized in Parkinson's disease (PD), with levels in nucleus accumbensgreater than caudategreater than putamen, ventralgreater than dorsal, and rostral putamengreater than caudal. In contrast, distribution of glial markers including glial fibrillary acidic protein (GFAP) and human leukocyte antigens (HLA-DRα and HLA-DR/DQ/DPβ), other Bcl-2 family proteins, and control proteins neuron-specific enolase and α-tubulin in the striatum was either homogeneous or had a pattern unmatched to dopamine loss in PD. The putamen also showed more marked age-dependent decreases in concentrations of PSA-NCAM, TUC-4, and DCX and increases in GFAP levels than caudate. We conclude that the intrastriatal pattern of several key axon growth proteins is heterogeneous in adult human brain. Further investigation will be required to establish whether this pattern, which was inversely correlated with the pattern of dopamine loss in PD, is involved to any extent in the pathophysiology of this degenerative disorder. | | 21029775
|
The MEK-ERK pathway negatively regulates bim expression through the 3' UTR in sympathetic neurons. Hughes, R; Gilley, J; Kristiansen, M; Ham, J BMC neuroscience
12
69
2010
Zobrazit abstrakt
Apoptosis plays a critical role during neuronal development and disease. Developing sympathetic neurons depend on nerve growth factor (NGF) for survival during the late embryonic and early postnatal period and die by apoptosis in its absence. The proapoptotic BH3-only protein Bim increases in level after NGF withdrawal and is required for NGF withdrawal-induced death. The regulation of Bim expression in neurons is complex and this study describes a new mechanism by which an NGF-activated signalling pathway regulates bim gene expression in sympathetic neurons.We report that U0126, an inhibitor of the prosurvival MEK-ERK pathway, increases bim mRNA levels in sympathetic neurons in the presence of NGF. We find that this effect is independent of PI3-K-Akt and JNK-c-Jun signalling and is not mediated by the promoter, first exon or first intron of the bim gene. By performing 3' RACE and microinjection experiments with a new bim-LUC+3'UTR reporter construct, we show that U0126 increases bim expression via the bim 3' UTR. We demonstrate that this effect does not involve a change in bim mRNA stability and by using PD184352, a specific MEK1/2-ERK1/2 inhibitor, we show that this mechanism involves the MEK1/2-ERK1/2 pathway. Finally, we demonstrate that inhibition of MEK/ERK signalling independently reduces cell survival in NGF-treated sympathetic neurons.These results suggest that in sympathetic neurons, MEK-ERK signalling negatively regulates bim expression via the 3' UTR and that this regulation is likely to be at the level of transcription. This data provides further insight into the different mechanisms by which survival signalling pathways regulate bim expression in neurons. Celý text článku | | 21762482
|
NF-Y is essential for expression of the proapoptotic bim gene in sympathetic neurons. Hughes, R; Kristiansen, M; Lassot, I; Desagher, S; Mantovani, R; Ham, J Cell death and differentiation
18
937-47
2010
Zobrazit abstrakt
Neuronal apoptosis has a major role during development and aberrant apoptosis contributes to the pathology of certain neurological conditions. Studies with nerve growth factor (NGF)-dependent sympathetic neurons have provided important insights into the molecular mechanisms of neuronal apoptosis and the signalling pathways that regulate the cell death programme in neurons. The BH3-only protein Bim is a critical mediator of apoptosis in many cell types and in sympathetic neurons is required for NGF withdrawal-induced death. However, regulation of bim expression is complex and remains incompletely understood. We report that a conserved inverted CCAAT box (ICB) in the rat bim promoter is bound by the heterotrimeric transcription factor NF-Y. Interestingly, NF-Y is required for bim promoter activity and its induction following NGF withdrawal. We demonstrate that NF-Y activity is essential for endogenous Bim expression and contributes to NGF withdrawal-induced death. Furthermore, we find that the transcriptional coactivators CBP and p300 interact with NF-Y and FOXO3a and bind to this region of the bim promoter. The amount of CBP/p300 bound to bim increases after NGF deprivation and inhibition of CBP/p300 activity reduces bim induction. Our results indicate that NF-Y cooperates with FOXO3a to recruit CBP/p300 to the bim promoter to form a stable multi-protein/DNA complex that activates bim transcription after survival factor withdrawal. | | 21164521
|
Egr-1 transactivates Bim gene expression to promote neuronal apoptosis. Xie, B; Wang, C; Zheng, Z; Song, B; Ma, C; Thiel, G; Li, M The Journal of neuroscience : the official journal of the Society for Neuroscience
31
5032-44
2010
Zobrazit abstrakt
The proapoptotic BH3-only protein Bim is a crucial regulator of neuronal apoptosis. Previous studies have indicated the involvement of the c-Jun, FOXO1/3a, and B/C-Myb transcription factors in the regulation of Bim during neuronal apoptosis. However, the mechanism underlying the transcriptional regulation of Bim in activity deprivation-induced neuronal apoptosis has remained unclear. The present study demonstrates that early growth response 1 (Egr-1), rather than c-Jun, FOXO1/3a, or B/C-Myb, directly transactivates Bim gene expression to mediate apoptosis of rat cerebellar granule neurons. We showed that Egr-1 was sufficient and necessary for neuronal apoptosis. Suppression of Egr-1 activity using dominant-negative mutant or knockdown of Egr-1 using small interfering RNAs led to a decrease in Bim expression, whereas overexpression of Egr-1 resulted in induction of Bim. Deletion and site-directed mutagenesis of the Bim promoter revealed that Bim transcriptional activation depends primarily on a putative Egr-binding sequence between nucleotides -56 and -47 upstream of the start site. We also showed that Egr-1 binding to this sequence increased in response to activity deprivation in vitro and in vivo. Moreover, inhibition of Egr-1 binding to the Bim promoter, by mithramycin A and chromomycin A3, reduced the activity deprivation-induced increases in Bim promoter activity and mRNA and protein levels and protected neurons from apoptosis, further supporting the Egr-1-mediated transactivation of Bim. Additionally, Bim overcame the Egr-1 knockdown-mediated inhibition of apoptosis, whereas Bim knockdown impaired the increase in apoptosis induced by Egr-1. These findings establish Bim as an Egr-1 target gene in neurons, uncovering a novel Egr-1/Bim pathway by which activity deprivation induces neuronal apoptosis. | | 21451041
|
Mkp1 is a c-Jun target gene that antagonizes JNK-dependent apoptosis in sympathetic neurons. Kristiansen, M; Hughes, R; Patel, P; Jacques, TS; Clark, AR; Ham, J The Journal of neuroscience : the official journal of the Society for Neuroscience
30
10820-32
2009
Zobrazit abstrakt
Developing sympathetic neurons depend on NGF for survival. When sympathetic neurons are deprived of NGF in vitro, a well documented series of events, including c-Jun N-terminal kinase (JNK) pathway activation, release of cytochrome c from the mitochondria, and caspase activation, culminates in the death of the neuron by apoptosis within 24-48 h. This process requires de novo gene expression, suggesting that increased expression of specific genes activates the cell death program. Using rat gene microarrays, we found that NGF withdrawal induces the expression of many genes, including mkp1, which encodes a MAPK phosphatase that can dephosphorylate JNKs. The increase in mkp1 mRNA level requires the MLK-JNK-c-Jun pathway, and we show that Mkp1 is an important regulator of JNK-dependent apoptosis in sympathetic neurons. In microinjection experiments, Mkp1 overexpression can inhibit JNK-mediated phosphorylation of c-Jun and protect sympathetic neurons from apoptosis, while Mkp1 knockdown accelerates NGF withdrawal-induced death. Accordingly, the number of superior cervical ganglion (SCG) neurons is reduced in mkp1-/- mice at P1 during the period of developmental sympathetic neuron death. We also show that c-Jun and ATF2 bind to two conserved ATF binding sites in the mkp1 promoter in vitro and in chromatin. Both of these ATF sites contribute to basal promoter activity and are required for mkp1 promoter induction after NGF withdrawal. These results demonstrate that Mkp1 is part of a negative feedback loop induced by the MLK-JNK-c-Jun signaling pathway that modulates JNK activity and the rate of neuronal death in rat sympathetic neurons following NGF withdrawal. | | 20702711
|
Perturbation of the Bcl-2 network and an induced Noxa/Bcl-xL interaction trigger mitochondrial dysfunction after DNA damage. Lopez, H; Zhang, L; George, NM; Liu, X; Pang, X; Evans, JJ; Targy, NM; Luo, X The Journal of biological chemistry
285
15016-26
2009
Zobrazit abstrakt
How most apoptotic stimuli trigger mitochondrial dysfunction remains to be resolved. We screened the entire Bcl-2 network for its involvement in DNA damage-induced apoptosis in HeLa cells. Although the anti-apoptotic member Bcl-xL served as a major suppressor, apoptosis initiated only when both Mcl-1 and Bcl-xL were eliminated. The pro-apoptotic members Bak, Bad, Bim, and Noxa were required for apoptosis induced by DNA damaging agents camptothecin and UV. We, therefore, used a His-tagged Bcl-xL expression system to capture the relevant BH3-only proteins that bind to Bcl-xL in response to DNA damage. Surprisingly, unlike Bad and Bim, which bound Bcl-xL constitutively, Noxa became "Mcl-1-free" and interacted with Bcl-xL after DNA damage but not after death receptor engagement. Similar observations were also made in A431 cells. Importantly, this induced interaction caused cytochrome c release and apoptosis and was directly inhibited by Mcl-1, a protein eliminated or inactivated after DNA damage. These results suggest that the loss/inactivation of Mcl-1 in conjunction with an induced Noxa/Bcl-xL interaction may serve as a trigger for mitochondrial dysfunction during DNA damage-induced apoptosis. Celý text článku | | 20223826
|