Histone H3 lysine 9 trimethylation is required for suppressing the expression of an embryonically activated retrotransposon in Xenopus laevis. Herberg, S; Simeone, A; Oikawa, M; Jullien, J; Bradshaw, CR; Teperek, M; Gurdon, J; Miyamoto, K Scientific reports
5
14236
2015
Show Abstract
Transposable elements in the genome are generally silenced in differentiated somatic cells. However, increasing evidence indicates that some of them are actively transcribed in early embryos and the proper regulation of retrotransposon expression is essential for normal development. Although their developmentally regulated expression has been shown, the mechanisms controlling retrotransposon expression in early embryos are still not well understood. Here, we observe a dynamic expression pattern of retrotransposons with three out of ten examined retrotransposons (1a11, λ-olt 2-1 and xretpos(L)) being transcribed solely during early embryonic development. We also identified a transcript that contains the long terminal repeat (LTR) of λ-olt 2-1 and shows a similar expression pattern to λ-olt 2-1 in early Xenopus embryos. All three retrotransposons are transcribed by RNA polymerase II. Although their expression levels decline during development, the LTRs are marked by histone H3 lysine 4 trimethylation. Furthermore, retrotransposons, especially λ-olt 2-1, are enriched with histone H3 lysine 9 trimethylation (H3K9me3) when their expression is repressed. Overexpression of lysine-specific demethylase 4d removes H3K9me3 marks from Xenopus embryos and inhibits the repression of λ-olt 2-1 after gastrulation. Thus, our study shows that H3K9me3 is important for silencing the developmentally regulated retrotransposon in Xenopus laevis. | | | 26387861
|
HP1β-dependent recruitment of UBF1 to irradiated chromatin occurs simultaneously with CPDs. Stixová, L; Sehnalová, P; Legartová, S; Suchánková, J; Hrušková, T; Kozubek, S; Sorokin, DV; Matula, P; Raška, I; Kovařík, A; Fulneček, J; Bártová, E Epigenetics & chromatin
7
39
2014
Show Abstract
The repair of spontaneous and induced DNA lesions is a multistep process. Depending on the type of injury, damaged DNA is recognized by many proteins specifically involved in distinct DNA repair pathways.We analyzed the DNA-damage response after ultraviolet A (UVA) and γ irradiation of mouse embryonic fibroblasts and focused on upstream binding factor 1 (UBF1), a key protein in the regulation of ribosomal gene transcription. We found that UBF1, but not nucleolar proteins RPA194, TCOF, or fibrillarin, was recruited to UVA-irradiated chromatin concurrently with an increase in heterochromatin protein 1β (HP1β) level. Moreover, Förster Resonance Energy Transfer (FRET) confirmed interaction between UBF1 and HP1β that was dependent on a functional chromo shadow domain of HP1β. Thus, overexpression of HP1β with a deleted chromo shadow domain had a dominant-negative effect on UBF1 recruitment to UVA-damaged chromatin. Transcription factor UBF1 also interacted directly with DNA inside the nucleolus but no interaction of UBF1 and DNA was confirmed outside the nucleolus, where UBF1 recruitment to DNA lesions appeared simultaneously with cyclobutane pyrimidine dimers; this occurrence was cell-cycle-independent.We propose that the simultaneous presence and interaction of UBF1 and HP1β at DNA lesions is activated by the presence of cyclobutane pyrimidine dimers and mediated by the chromo shadow domain of HP1β. This might have functional significance for nucleotide excision repair. | Western Blotting | | 25587355
|
Dynamic phosphorylation of HP1α regulates mitotic progression in human cells. Chakraborty, A; Prasanth, KV; Prasanth, SG Nature communications
5
3445
2014
Show Abstract
Heterochromatin protein 1α (HP1α), a key player in the establishment and maintenance of higher-order chromatin regulates key cellular processes, including metaphase chromatid cohesion and centromere organization. However, how HP1α controls these processes is not well understood. Here we demonstrate that post-translational modifications of HP1α dictate its mitotic functions. HP1α is constitutively phosphorylated within its amino terminus, whereas phosphorylation within the hinge domain occurs preferentially at G2/M phase of the cell cycle. The hinge-phosphorylated form of HP1α specifically localizes to kinetochores during early mitosis and this phosphorylation mediated by NDR1 kinase is required for mitotic progression and for Sgo1 binding to mitotic centromeres. Cells lacking NDR kinase show loss of mitosis-specific phosphorylation of HP1α leading to prometaphase arrest. Our results reveal that NDR kinase catalyses the hinge-specific phosphorylation of human HP1α during G2/M in vivo and this orchestrates accurate chromosome alignment and mitotic progression. | Western Blotting | | 24619172
|
Detection of senescence-associated heterochromatin foci (SAHF). Aird, KM; Zhang, R Methods in molecular biology (Clifton, N.J.)
965
185-96
2013
Show Abstract
One of the most prominent features of cellular senescence, a stress response that prevents the propagation of cells that have accumulated potentially oncogenic alterations, is a permanent loss of proliferative potential. Thus, at odds with quiescent cells, which resume proliferation when stimulated to do so, senescent cells cannot proceed through the cell cycle even in the presence of mitogenic factors. Here, we describe a set of cytofluorometric techniques for studying how chemical and/or physical stimuli alter the cell cycle in vitro, in both qualitative and quantitative terms. Taken together, these methods allow for the identification of bona fide cytostatic effects as well as for a refined characterization of cell cycle distributions, providing information on proliferation, DNA content, as well as the presence of cell cycle phase-specific markers. At the end of the chapter, a set of guidelines is offered to assist researchers that approach the study of the cell cycle with the interpretation of results. | | | 23296659
|
Developmentally regulated linker histone H1c promotes heterochromatin condensation and mediates structural integrity of rod photoreceptors in mouse retina. Popova, EY; Grigoryev, SA; Fan, Y; Skoultchi, AI; Zhang, SS; Barnstable, CJ The Journal of biological chemistry
288
17895-907
2013
Show Abstract
Mature rod photoreceptor cells contain very small nuclei with tightly condensed heterochromatin. We observed that during mouse rod maturation, the nucleosomal repeat length increases from 190 bp at postnatal day 1 to 206 bp in the adult retina. At the same time, the total level of linker histone H1 increased reaching the ratio of 1.3 molecules of total H1 per nucleosome, mostly via a dramatic increase in H1c. Genetic elimination of the histone H1c gene is functionally compensated by other histone variants. However, retinas in H1c/H1e/H1(0) triple knock-outs have photoreceptors with bigger nuclei, decreased heterochromatin area, and notable morphological changes suggesting that the process of chromatin condensation and rod cell structural integrity are partly impaired. In triple knock-outs, nuclear chromatin exposed several epigenetic histone modification marks masked in the wild type chromatin. Dramatic changes in exposure of a repressive chromatin mark, H3K9me2, indicate that during development linker histone plays a role in establishing the facultative heterochromatin territory and architecture in the nucleus. During retina development, the H1c gene and its promoter acquired epigenetic patterns typical of rod-specific genes. Our data suggest that histone H1c gene expression is developmentally up-regulated to promote facultative heterochromatin in mature rod photoreceptors. | | | 23645681
|
Murine esBAF chromatin remodeling complex subunits BAF250a and Brg1 are necessary to maintain and reprogram pluripotency-specific replication timing of select replication domains. Takebayashi, S; Lei, I; Ryba, T; Sasaki, T; Dileep, V; Battaglia, D; Gao, X; Fang, P; Fan, Y; Esteban, MA; Tang, J; Crabtree, GR; Wang, Z; Gilbert, DM Epigenetics & chromatin
6
42
2013
Show Abstract
Cellular differentiation and reprogramming are accompanied by changes in replication timing and 3D organization of large-scale (400 to 800 Kb) chromosomal domains ('replication domains'), but few gene products have been identified whose disruption affects these properties.Here we show that deletion of esBAF chromatin-remodeling complex components BAF250a and Brg1, but not BAF53a, disrupts replication timing at specific replication domains. Also, BAF250a-deficient fibroblasts reprogrammed to a pluripotency-like state failed to reprogram replication timing in many of these same domains. About half of the replication domains affected by Brg1 loss were also affected by BAF250a loss, but a much larger set of domains was affected by BAF250a loss. esBAF binding in the affected replication domains was dependent upon BAF250a but, most affected domains did not contain genes whose transcription was affected by loss of esBAF.Loss of specific esBAF complex subunits alters replication timing of select replication domains in pluripotent cells. | | | 24330833
|
SOX10 ablation arrests cell cycle, induces senescence, and suppresses melanomagenesis. Cronin, JC; Watkins-Chow, DE; Incao, A; Hasskamp, JH; Schönewolf, N; Aoude, LG; Hayward, NK; Bastian, BC; Dummer, R; Loftus, SK; Pavan, WJ Cancer research
73
5709-18
2013
Show Abstract
The transcription factor SOX10 is essential for survival and proper differentiation of neural crest cell lineages, where it plays an important role in the generation and maintenance of melanocytes. SOX10 is also highly expressed in melanoma tumors, but a role in disease progression has not been established. Here, we report that melanoma tumor cell lines require wild-type SOX10 expression for proliferation and SOX10 haploinsufficiency reduces melanoma initiation in the metabotropic glutamate receptor 1 (Grm1(Tg)) transgenic mouse model. Stable SOX10 knockdown in human melanoma cells arrested cell growth, altered cellular morphology, and induced senescence. Melanoma cells with stable loss of SOX10 were arrested in the G1 phase of the cell cycle, with reduced expression of the melanocyte determining factor microphthalmia-associated transcription factor, elevated expression of p21WAF1 and p27KIP2, hypophosphorylated RB, and reduced levels of its binding partner E2F1. As cell-cycle dysregulation is a core event in neoplastic transformation, the role for SOX10 in maintaining cell-cycle control in melanocytes suggests a rational new direction for targeted treatment or prevention of melanoma. | | | 23913827
|
Loss of WSTF results in spontaneous fluctuations of heterochromatin formation and resolution, combined with substantial changes to gene expression. Culver-Cochran, AE; Chadwick, BP BMC genomics
14
740
2013
Show Abstract
Williams syndrome transcription factor (WSTF) is a multifaceted protein that is involved in several nuclear processes, including replication, transcription, and the DNA damage response. WSTF participates in a chromatin-remodeling complex with the ISWI ATPase, SNF2H, and is thought to contribute to the maintenance of heterochromatin, including at the human inactive X chromosome (Xi). WSTF is encoded by BAZ1B, and is one of twenty-eight genes that are hemizygously deleted in the genetic disorder Williams-Beuren syndrome (WBS).To explore the function of WSTF, we performed zinc finger nuclease-assisted targeting of the BAZ1B gene and isolated several independent knockout clones in human cells. Our results show that, while heterochromatin at the Xi is unaltered, new inappropriate areas of heterochromatin spontaneously form and resolve throughout the nucleus, appearing as large DAPI-dense staining blocks, defined by histone H3 lysine-9 trimethylation and association of the proteins heterochromatin protein 1 and structural maintenance of chromosomes flexible hinge domain containing 1. In three independent mutants, the expression of a large number of genes were impacted, both up and down, by WSTF loss.Given the inappropriate appearance of regions of heterochromatin in BAZ1B knockout cells, it is evident that WSTF performs a critical role in maintaining chromatin and transcriptional states, a property that is likely compromised by WSTF haploinsufficiency in WBS patients. | | | 24168170
|
Mouse BAZ1A (ACF1) is dispensable for double-strand break repair but is essential for averting improper gene expression during spermatogenesis. Dowdle, JA; Mehta, M; Kass, EM; Vuong, BQ; Inagaki, A; Egli, D; Jasin, M; Keeney, S PLoS genetics
9
e1003945
2013
Show Abstract
ATP-dependent chromatin remodelers control DNA access for transcription, recombination, and other processes. Acf1 (also known as BAZ1A in mammals) is a defining subunit of the conserved ISWI-family chromatin remodelers ACF and CHRAC, first purified over 15 years ago from Drosophila melanogaster embryos. Much is known about biochemical properties of ACF and CHRAC, which move nucleosomes in vitro and in vivo to establish ordered chromatin arrays. Genetic studies in yeast, flies and cultured human cells clearly implicate these complexes in transcriptional repression via control of chromatin structures. RNAi experiments in transformed mammalian cells in culture also implicate ACF and CHRAC in DNA damage checkpoints and double-strand break repair. However, their essential in vivo roles in mammals are unknown. Here, we show that Baz1a-knockout mice are viable and able to repair developmentally programmed DNA double-strand breaks in the immune system and germ line, I-SceI endonuclease-induced breaks in primary fibroblasts via homologous recombination, and DNA damage from mitomycin C exposure in vivo. However, Baz1a deficiency causes male-specific sterility in accord with its high expression in male germ cells, where it displays dynamic, stage-specific patterns of chromosomal localization. Sterility is caused by pronounced defects in sperm development, most likely a consequence of massively perturbed gene expression in spermatocytes and round spermatids in the absence of BAZ1A: the normal spermiogenic transcription program is largely intact but more than 900 other genes are mis-regulated, primarily reflecting inappropriate up-regulation. We propose that large-scale changes in chromatin composition that occur during spermatogenesis create a window of vulnerability to promiscuous transcription changes, with an essential function of ACF and/or CHRAC chromatin remodeling activities being to safeguard against these alterations. | | | 24244200
|
Epigenetic regulation of myogenic gene expression by heterochromatin protein 1 alpha. Sdek, P; Oyama, K; Angelis, E; Chan, SS; Schenke-Layland, K; MacLellan, WR PloS one
8
e58319
2013
Show Abstract
Heterochromatin protein 1 (HP1) is an essential heterochromatin-associated protein typically involved in the epigenetic regulation of gene silencing. However, recent reports have demonstrated that HP1 can also activate gene expression in certain contexts including differentiation. To explore the role of each of the three mammalian HP1 family members (α, β and γ) in skeletal muscle, their expression was individually disrupted in differentiating skeletal myocytes. Among the three isoforms of HP1, HP1α was specifically required for myogenic gene expression in myoblasts only. Knockdown of HP1α led to a defect in transcription of skeletal muscle-specific genes including Lbx1, MyoD and myogenin. HP1α binds to the genomic region of myogenic genes and depletion of HP1α results in a paradoxical increase in histone H3 lysine 9 trimethylation (H3K9me3) at these sites. JHDM3A, a H3K9 demethylase also binds to myogenic gene's genomic regions in myoblasts in a HP1α-dependent manner. JHDM3A interacts with HP1α and knockdown of JHDM3A in myoblasts recapitulates the decreased myogenic gene transcription seen with HP1α depletion. These results propose a novel mechanism for HP1α-dependent gene activation by interacting with the demethylase JHDM3A and that HP1α is required for maintenance of myogenic gene expression in myoblasts. | | | 23505487
|