Paclitaxel induces prolonged activation of the Ras/MEK/ERK pathway independently of activating the programmed cell death machinery. Okano J, and Rustgi, A K J. Biol. Chem., 276: 19555-64 (2001)
2001
Show Abstract
Paclitaxel is a widely used chemotherapeutic agent and is known to induce programmed cell death (apoptosis) in a variety of cell types, but the precise underlying mechanisms are poorly understood. To elucidate these mechanisms, we challenged human esophageal squamous cancer cell lines with paclitaxel and investigated its effects upon signal transduction pathways. Physiologically relevant concentrations of paclitaxel (1-1,000 nm) induced apoptosis. All three mitogen-activated protein kinase (MAPK) family members, c-Jun N-terminal kinase (JNK), p38 MAPK, and extracellular signal-regulated kinase (ERK) were activated upon paclitaxel treatment. Interestingly, JNK activation and p38 MAPK activation were delayed and peaked at 48 h, whereas ERK activity was sustained over 72 h. In addition, Ras activation and MAPK/ERK kinase (MEK) phosphorylation were observed in concordance with ERK activation. While ERK activation was completely ablated by MEK inhibitors, immunoprecipitation and Western blot analysis revealed that neither MEK-1 nor MEK-2 was involved, but instead another member of the MEK family may potentially participate. Although pretreatment with a general caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone rescued the cell death, it did not prevent Ras or ERK activation. Furthermore, inhibition of JNK, p38 MAPK, or MEK did not alter PARP cleavage and the cell death induced by paclitaxel. These results in aggregate suggest that the delayed activation of JNK, p38 MAPK, and ERK was not linked to activation of the cell death machinery. | Kinase Assay | 11278851
|
Inhibition of mitogen-activated protein kinase kinase blocks T cell proliferation but does not induce or prevent anergy. DeSilva, D R, et al. J. Immunol., 160: 4175-81 (1998)
1998
Show Abstract
Three mitogen-activated protein kinase pathways are up-regulated during the activation of T lymphocytes, the extracellular signal-regulated kinase (ERK), Jun NH2-terminal kinase, and p38 mitogen-activated protein kinase pathways. To examine the effects of blocking the ERK pathway on T cell activation, we used the inhibitor U0126, which has been shown to specifically block mitogen-activated protein kinase/ERK kinase (MEK), the kinase upstream of ERK. This compound inhibited T cell proliferation in response to antigenic stimulation or cross-linked anti-CD3 plus anti-CD28 Abs, but had no effect on IL-2-induced proliferation. The block in T cell proliferation was mediated by down-regulating IL-2 mRNA levels. Blocking Ag-induced proliferation by inhibiting MEK did not induce anergy, unlike treatments that block entry into the cell cycle following antigenic stimulation. Surprisingly, induction of anergy in T cells exposed to TCR cross-linking in the absence of costimulation was also not affected by blocking MEK, unlike cyclosporin A treatment that blocks anergy induction. These results suggest that inhibition of MEK prevents T cell proliferation in the short term, but does not cause any long-term effects on either T cell activation or induction of anergy. These findings may help determine the viability of using mitogen-activated protein kinase inhibitors as immune suppressants. | | 9574517
|
Identification of a novel inhibitor of mitogen-activated protein kinase kinase. Favata, M F, et al. J. Biol. Chem., 273: 18623-32 (1998)
1998
Show Abstract
The compound U0126 (1,4-diamino-2,3-dicyano-1, 4-bis[2-aminophenylthio]butadiene) was identified as an inhibitor of AP-1 transactivation in a cell-based reporter assay. U0126 was also shown to inhibit endogenous promoters containing AP-1 response elements but did not affect genes lacking an AP-1 response element in their promoters. These effects of U0126 result from direct inhibition of the mitogen-activated protein kinase kinase family members, MEK-1 and MEK-2. Inhibition is selective for MEK-1 and -2, as U0126 shows little, if any, effect on the kinase activities of protein kinase C, Abl, Raf, MEKK, ERK, JNK, MKK-3, MKK-4/SEK, MKK-6, Cdk2, or Cdk4. Comparative kinetic analysis of U0126 and the MEK inhibitor PD098059 (Dudley, D. T., Pang, L., Decker, S. J., Bridges, A. J., and Saltiel, A. R. (1995) Proc. Natl. Acad. Sci U. S. A. 92, 7686-7689) demonstrates that U0126 and PD098059 are noncompetitive inhibitors with respect to both MEK substrates, ATP and ERK. We further demonstrate that the two compounds bind to deltaN3-S218E/S222D MEK in a mutually exclusive fashion, suggesting that they may share a common or overlapping binding site(s). Quantitative evaluation of the steady state kinetics of MEK inhibition by these compounds reveals that U0126 has approximately 100-fold higher affinity for deltaN3-S218E/S222D MEK than does PD098059. We further tested the effects of these compounds on the activity of wild type MEK isolated after activation from stimulated cells. Surprisingly, we observe a significant diminution in affinity of both compounds for wild type MEK as compared with the deltaN3-S218E/S222D mutant enzyme. These results suggest that the affinity of both compounds is mediated by subtle conformational differences between the two activated MEK forms. The MEK affinity of U0126, its selectivity for MEK over other kinases, and its cellular efficacy suggest that this compound will serve as a powerful tool for in vitro and cellular investigations of mitogen-activated protein kinase-mediated signal transduction. | | 9660836
|
Inhibition of MAP kinase kinase prevents cytokine and prostaglandin E2 production in lipopolysaccharide-stimulated monocytes. Scherle, P A, et al. J. Immunol., 161: 5681-6 (1998)
1998
Show Abstract
Activation of the extracellular signal-regulated kinase (ERK) pathway has been shown to occur in monocytes following stimulation with LPS. However, the importance of this event for monocyte function is not clear. To address this issue, we used the novel MAP/ERK kinase (MEK) inhibitor, U0126. Stimulation of monocytes with LPS resulted in activation of the mitogen-activated protein kinase (MAPK) family members ERK, Jun NH2-terminal kinase (JNK), and p38. Treatment of monocytes with LPS in the presence of U0126 blocked the activation of ERK1 and ERK2. However, the activation of Jun NH2-terminal kinase and p38 family members was not affected by the compound, confirming the selectivity of U0126. To examine the effects of MEK inhibition on monocyte function, we measured production of the cytokines IL-1, IL-8, and TNF, as well as PGE2. Monocytes treated with LPS in the presence of U0126 failed to release IL-1, IL-8, TNF, or PGE2. The failure to secrete IL-1 and TNF was due to decreased levels of mRNA. These results demonstrate that activation of MEK/ERK is critical for cytokine and PGE2 production by monocytes in response to LPS. | | 9820549
|