The proto-oncogene c-Src and its downstream signaling pathways are inhibited by the metastasis suppressor, NDRG1. Liu, W; Yue, F; Zheng, M; Merlot, A; Bae, DH; Huang, M; Lane, D; Jansson, P; Lui, GY; Richardson, V; Sahni, S; Kalinowski, D; Kovacevic, Z; Richardson, DR Oncotarget
6
8851-74
2015
Show Abstract
N-myc downstream regulated gene-1 (NDRG1) is a potent metastasis suppressor that plays a key role in regulating signaling pathways involved in mediating cancer cell invasion and migration, including those derived from prostate, colon, etc. However, the mechanisms and molecular targets through which NDRG1 reduces cancer cell invasion and migration, leading to inhibition of cancer metastasis, are not fully elucidated. In this investigation, using NDRG1 over-expression models in three tumor cell-types (namely, DU145, PC3MM and HT29) and also NDRG1 silencing in DU145 and HT29 cells, we reveal that NDRG1 decreases phosphorylation of a key proto-oncogene, cellular Src (c-Src), at a well-characterized activating site (Tyr416). NDRG1-mediated down-regulation of EGFR expression and activation were responsible for the decreased phosphorylation of c-Src (Tyr416). Indeed, NDRG1 prevented recruitment of c-Src to EGFR and c-Src activation. Moreover, NDRG1 suppressed Rac1 activity by modulating phosphorylation of a c-Src downstream effector, p130Cas, and its association with CrkII, which acts as a "molecular switch" to activate Rac1. NDRG1 also affected another signaling molecule involved in modulating Rac1 signaling, c-Abl, which then inhibited CrkII phosphorylation. Silencing NDRG1 increased cell migration relative to the control and inhibition of c-Src signaling using siRNA, or a pharmacological inhibitor (SU6656), prevented this increase. Hence, the role of NDRG1 in decreasing cell migration is, in part, due to its inhibition of c-Src activation. In addition, novel pharmacological agents, which induce NDRG1 expression and are currently under development as anti-metastatic agents, markedly increase NDRG1 and decrease c-Src activation. This study leads to important insights into the mechanism involved in inhibiting metastasis by NDRG1 and how to target these pathways with novel therapeutics. | | | 25860930
|
Immunohistochemical analysis of the natural killer cell cytotoxicity pathway in human abdominal aortic aneurysms. Hinterseher, I; Schworer, CM; Lillvis, JH; Stahl, E; Erdman, R; Gatalica, Z; Tromp, G; Kuivaniemi, H International journal of molecular sciences
16
11196-212
2015
Show Abstract
Our previous analysis using genome-wide microarray expression data revealed extreme overrepresentation of immune related genes belonging the Natural Killer (NK) Cell Mediated Cytotoxicity pathway (hsa04650) in human abdominal aortic aneurysm (AAA). We followed up the microarray studies by immunohistochemical analyses using antibodies against nine members of the NK pathway (VAV1, VAV3, PLCG1, PLCG2, HCST, TYROBP, PTK2B, TNFA, and GZMB) and aortic tissue samples from AAA repair operations (n = 6) and control aortae (n = 8) from age-, sex- and ethnicity-matched donors from autopsies. The results confirmed the microarray results. Two different members of the NK pathway, HCST and GRZB, which act at different steps in the NK-pathway, were actively transcribed and translated into proteins in the same cells in the AAA tissue demonstrated by double staining. Furthermore, double staining with antibodies against CD68 or CD8 together with HCST, TYROBP, PTK2B or PLCG2 revealed that CD68 and CD8 positive cells expressed proteins of the NK-pathway but were not the only inflammatory cells involved in the NK-pathway in the AAA tissue. The results provide strong evidence that the NK Cell Mediated Cytotoxicity Pathway is activated in human AAA and valuable insight for future studies to dissect the pathogenesis of human AAA. | | | 25993291
|
Lichen Secondary Metabolite, Physciosporin, Inhibits Lung Cancer Cell Motility. Yang, Y; Park, SY; Nguyen, TT; Yu, YH; Nguyen, TV; Sun, EG; Udeni, J; Jeong, MH; Pereira, I; Moon, C; Ha, HH; Kim, KK; Hur, JS; Kim, H PloS one
10
e0137889
2015
Show Abstract
Lichens produce various unique chemicals that can be used for pharmaceutical purposes. To screen for novel lichen secondary metabolites showing inhibitory activity against lung cancer cell motility, we tested acetone extracts of 13 lichen samples collected in Chile. Physciosporin, isolated from Pseudocyphellaria coriacea (Hook f. & Taylor) D.J. Galloway & P. James, was identified as an effective compound and showed significant inhibitory activity in migration and invasion assays against human lung cancer cells. Physciosporin treatment reduced both protein and mRNA levels of N-cadherin with concomitant decreases in the levels of epithelial-mesenchymal transition markers such as snail and twist. Physciosporin also suppressed KITENIN (KAI1 C-terminal interacting tetraspanin)-mediated AP-1 activity in both the absence and presence of epidermal growth factor stimulation. Quantitative real-time PCR analysis showed that the expression of the metastasis suppressor gene, KAI1, was increased while that of the metastasis enhancer gene, KITENIN, was dramatically decreased by physciosporin. Particularly, the activity of 3'-untranslated region of KITENIN was decreased by physciosporin. Moreover, Cdc42 and Rac1 activities were decreased by physciosporin. These results demonstrated that the lichen secondary metabolite, physciosporin, inhibits lung cancer cell motility through novel mechanisms of action. | | | 26371759
|
Spatial mapping of juxtacrine axo-glial interactions identifies novel molecules in peripheral myelination. Poitelon, Y; Bogni, S; Matafora, V; Della-Flora Nunes, G; Hurley, E; Ghidinelli, M; Katzenellenbogen, BS; Taveggia, C; Silvestri, N; Bachi, A; Sannino, A; Wrabetz, L; Feltri, ML Nature communications
6
8303
2015
Show Abstract
Cell-cell interactions promote juxtacrine signals in specific subcellular domains, which are difficult to capture in the complexity of the nervous system. For example, contact between axons and Schwann cells triggers signals required for radial sorting and myelination. Failure in this interaction causes dysmyelination and axonal degeneration. Despite its importance, few molecules at the axo-glial surface are known. To identify novel molecules in axo-glial interactions, we modified the 'pseudopodia' sub-fractionation system and isolated the projections that glia extend when they receive juxtacrine signals from axons. By proteomics we identified the signalling networks present at the glial-leading edge, and novel proteins, including members of the Prohibitin family. Glial-specific deletion of Prohibitin-2 in mice impairs axo-glial interactions and myelination. We thus validate a novel method to model morphogenesis and juxtacrine signalling, provide insights into the molecular organization of the axo-glial contact, and identify a novel class of molecules in myelination. | Immunohistochemistry | | 26383514
|
Wnt7a stimulates myogenic stem cell motility and engraftment resulting in improved muscle strength. Bentzinger, CF; von Maltzahn, J; Dumont, NA; Stark, DA; Wang, YX; Nhan, K; Frenette, J; Cornelison, DD; Rudnicki, MA The Journal of cell biology
205
97-111
2014
Show Abstract
Wnt7a/Fzd7 signaling stimulates skeletal muscle growth and repair by inducing the symmetric expansion of satellite stem cells through the planar cell polarity pathway and by activating the Akt/mTOR growth pathway in muscle fibers. Here we describe a third level of activity where Wnt7a/Fzd7 increases the polarity and directional migration of mouse satellite cells and human myogenic progenitors through activation of Dvl2 and the small GTPase Rac1. Importantly, these effects can be exploited to potentiate the outcome of myogenic cell transplantation into dystrophic muscles. We observed that a short Wnt7a treatment markedly stimulated tissue dispersal and engraftment, leading to significantly improved muscle function. Moreover, myofibers at distal sites that fused with Wnt7a-treated cells were hypertrophic, suggesting that the transplanted cells deliver activated Wnt7a/Fzd7 signaling complexes to recipient myofibers. Taken together, we describe a viable and effective ex vivo cell modulation process that profoundly enhances the efficacy of stem cell therapy for skeletal muscle. | Immunofluorescence | | 24711502
|
VAV3 mediates resistance to breast cancer endocrine therapy. Aguilar, H; Urruticoechea, A; Halonen, P; Kiyotani, K; Mushiroda, T; Barril, X; Serra-Musach, J; Islam, A; Caizzi, L; Di Croce, L; Nevedomskaya, E; Zwart, W; Bostner, J; Karlsson, E; Pérez Tenorio, G; Fornander, T; Sgroi, DC; Garcia-Mata, R; Jansen, MP; García, N; Bonifaci, N; Climent, F; Soler, MT; Rodríguez-Vida, A; Gil, M; Brunet, J; Martrat, G; Gómez-Baldó, L; Extremera, AI; Figueras, A; Balart, J; Clarke, R; Burnstein, KL; Carlson, KE; Katzenellenbogen, JA; Vizoso, M; Esteller, M; Villanueva, A; Rodríguez-Peña, AB; Bustelo, XR; Nakamura, Y; Zembutsu, H; Stål, O; Beijersbergen, RL; Pujana, MA Breast cancer research : BCR
16
R53
2014
Show Abstract
Endocrine therapies targeting cell proliferation and survival mediated by estrogen receptor α (ERα) are among the most effective systemic treatments for ERα-positive breast cancer. However, most tumors initially responsive to these therapies acquire resistance through mechanisms that involve ERα transcriptional regulatory plasticity. Herein we identify VAV3 as a critical component in this process.A cell-based chemical compound screen was carried out to identify therapeutic strategies against resistance to endocrine therapy. Binding to ERα was evaluated by molecular docking analyses, an agonist fluoligand assay and short hairpin (sh)RNA-mediated protein depletion. Microarray analyses were performed to identify altered gene expression. Western blot analysis of signaling and proliferation markers, and shRNA-mediated protein depletion in viability and clonogenic assays, were performed to delineate the role of VAV3. Genetic variation in VAV3 was assessed for association with the response to tamoxifen. Immunohistochemical analyses of VAV3 were carried out to determine its association with therapeutic response and different tumor markers. An analysis of gene expression association with drug sensitivity was carried out to identify a potential therapeutic approach based on differential VAV3 expression.The compound YC-1 was found to comparatively reduce the viability of cell models of acquired resistance. This effect was probably not due to activation of its canonical target (soluble guanylyl cyclase), but instead was likely a result of binding to ERα. VAV3 was selectively reduced upon exposure to YC-1 or ERα depletion, and, accordingly, VAV3 depletion comparatively reduced the viability of cell models of acquired resistance. In the clinical scenario, germline variation in VAV3 was associated with the response to tamoxifen in Japanese breast cancer patients (rs10494071 combined P value = 8.4 × 10-4). The allele association combined with gene expression analyses indicated that low VAV3 expression predicts better clinical outcome. Conversely, high nuclear VAV3 expression in tumor cells was associated with poorer endocrine therapy response. Based on VAV3 expression levels and the response to erlotinib in cancer cell lines, targeting EGFR signaling may be a promising therapeutic strategy.This study proposes VAV3 as a biomarker and a rationale for its use as a signaling target to prevent and/or overcome resistance to endocrine therapy in breast cancer. | | | 24886537
|
Novel mechanism of JNK pathway activation by adenoviral E1A. Romanov, VS; Brichkina, AI; Morrison, H; Pospelova, TV; Pospelov, VA; Herrlich, P Oncotarget
5
2176-86
2014
Show Abstract
The adenoviral oncoprotein E1A influences cellular regulation by interacting with a number of cellular proteins. In collaboration with complementary oncogenes, E1A fully transforms primary cells. As part of this action, E1A inhibits transcription of c-Jun:Fos target genes while promoting that of c-Jun:ATF2-dependent genes including jun. Both c-Jun and ATF2 are hyperphosphorylated in response to E1A. In the current study, E1A was fused with the ligand binding domain of the estrogen receptor (E1A-ER) to monitor the immediate effect of E1A activation. With this approach we now show that E1A activates c-Jun N-terminal kinase (JNK), the upstream kinases MKK4 and MKK7, as well as the small GTPase Rac1. Activation of the JNK pathway requires the N-terminal domain of E1A, and, importantly, is independent of transcription. In addition, it requires the presence of ERM proteins. Downregulation of signaling components upstream of JNK inhibits E1A-dependent JNK/c-Jun activation. Taking these findings together, we show that E1A activates the JNK/c-Jun signaling pathway upstream of Rac1 in a transcription-independent manner, demonstrating a novel mechanism of E1A action. | | | 24742962
|
Interactome analysis of AMP-activated protein kinase (AMPK)-α1 and -β1 in INS-1 pancreatic beta-cells by affinity purification-mass spectrometry. Moon, S; Han, D; Kim, Y; Jin, J; Ho, WK; Kim, Y Scientific reports
4
4376
2014
Show Abstract
The heterotrimeric enzyme AMP-activated protein kinase (AMPK) is a major metabolic factor that regulates the homeostasis of cellular energy. In particular, AMPK mediates the insulin resistance that is associated with type 2 diabetes. Generally, cellular processes require tight regulation of protein kinases, which is effected through their formation of complex with other proteins and substrates. Despite their critical function in regulation and pathogenesis, there are limited data on the interaction of protein kinases. To identify proteins that interact with AMPK, we performed large-scale affinity purification (AP)-mass spectrometry (MS) of the AMPK-α1 and -β1 subunits. Through a comprehensive analysis, using a combination of immunoprecipitaion and ion trap mass spectrometry, we identified 381 unique proteins in the AMPKα/β interactomes: 325 partners of AMPK-α1 and 243 for AMPK-β1. Further, we identified 196 novel protein-protein interactions with AMPK-α1 and AMPK-β1. Notably, in our bioinformatics analysis, the novel interaction partners mediated functions that are related to the regulation of actin organization. Specifically, several such proteins were linked to pancreatic beta-cell functions, including glucose-stimulated insulin secretion, beta-cell development, beta-cell differentiation, and cell-cell communication. | Western Blotting | | 24625528
|
ROCK1 deficiency enhances protective effects of antioxidants against apoptosis and cell detachment. Surma, M; Handy, C; Chang, J; Kapur, R; Wei, L; Shi, J PloS one
9
e90758
2014
Show Abstract
We have recently reported that the homologous Rho kinases, ROCK1 and ROCK2, play different roles in regulating stress-induced stress fiber disassembly and cell detachment, and the ROCK1 deficiency in mouse embryonic fibroblasts (MEF) has remarkable anti-apoptotic, anti-detachment and pro-survival effects against doxorubicin, a chemotherapeutic drug. This study investigated the roles of ROCK isoforms in doxorubicin-induced reactive oxygen species (ROS) generation which is believed to be the major mechanism underlying its cytotoxicity to normal cells, and especially to cardiomyocytes. Different antioxidants have been shown to provide a protective role reported in numerous experimental studies, but clinical trials of antioxidant therapy showed insufficient benefit against the cardiac side effect. We found that both ROCK1-/- and ROCK2-/- MEFs exhibited reduced ROS production in response to doxorubicin treatment. Interestingly, only ROCK1 deficiency, but not ROCK2 deficiency, significantly enhanced the protective effects of antioxidants against doxorubicin-induced cytotoxicity. First, ROCK1 deficiency and N-acetylcysteine (an anti-oxidant) treatment synergistically reduced ROS levels, caspase activation and cell detachment. In addition, the reduction of ROS generation in ROCK1-/- MEFs in response to doxorubicin treatment was in part through inhibiting NADPH oxidase activity. Furthermore, ROCK1 deficiency enhanced the inhibitory effects of diphenyleneiodonium (an inhibitor of NADPH oxidase) on ROS generation and caspase 3 activation induced by doxorubicin. Finally, ROCK1 deficiency had greater protective effects than antioxidant treatment, especially on reducing actin cytoskeleton remodeling. ROCK1 deficiency not only reduced actomyosin contraction but also preserved central stress fiber stability, whereas antioxidant treatment only reduced actomyosin contraction without preserving central stress fibers. These results reveal a novel strategy to enhance the protective effect of antioxidant therapy by targeting the ROCK1 pathway to stabilize the actin cytoskeleton and boost the inhibitory effects on ROS production, apoptosis and cell detachment. | Western Blotting | | 24595357
|
Hax-1 is required for Rac1-Cortactin interaction and ovarian carcinoma cell migration. Gomathinayagam, R; Muralidharan, J; Ha, JH; Varadarajalu, L; Dhanasekaran, DN Genes & cancer
5
84-99
2014
Show Abstract
Hax-1 is a multifunctional protein, which is involved in diverse cellular signaling pathways including tumor cell survival and migration. We have shown previously that cell migration stimulated by the oncogenic G protein, G13, requires Hax-1 for the formation of a functional complex involving Gα13, Rac1, and cortactin. However, the role of Hax-1 in cancer cell migration or its role in Rac1-cortactin complex formation, which is known to be required for such migration remains to be characterized. Results focused on resolving the role of Hax-1 in ovarian cancer pathophysiology indicate that Hax-1 is overexpressed in ovarian cancer cells and the silencing of Hax-1 inhibits lysophosphatidic acid (LPA)- or fetal bovine serum-stimulated migration of these cells. In addition, silencing of Hax-1 greatly reduces Rac1-cortactin interaction and their colocalization in SKOV3 cells. Mapping the structural domains of Hax-1 indicates that it interacts with cortactin via domains spanning amino acids 1 to 56 (Hax-D1) and amino acids 113 to 168 (Hax-D3). Much weaker interaction with cortactin was also observed with the region of Hax-1 spanning amino acids 169 - 224 (Hax-D4). Similar mapping of Hax-1 domains involved in Rac1 interaction indicates that it associates with Rac1 via two primary domains spanning amino acids 57 to 112 (Hax-D2) and 169 to 224 (Hax-D4). Furthermore, expression of either of these domains inhibits LPA-mediated migration of SKOV3 cells, possibly through their ability to exert competitive inhibition on endogenous Hax-1-Rac1 and/or Hax-1-cortactin interaction. More significantly, expression of Hax-D4 drastically reduces Rac1-cortactin colocalization in SKOV3 cells along with an attenuation of LPA-stimulated migration. Thus our results presented here describe for the first time that Hax-1 interaction is required for the association between Rac1 and cortactin and that these multiple interactions are required for the LPA-stimulated migration of SKOV3 ovarian cancer cells. | | | 25053987
|