Metabolic reprogramming towards aerobic glycolysis correlates with greater proliferative ability and resistance to metabolic inhibition in CD8 versus CD4 T cells. Cao, Y; Rathmell, JC; Macintyre, AN PloS one
9
e104104
2014
Show Abstract
T lymphocytes (T cells) undergo metabolic reprogramming after activation to provide energy and biosynthetic materials for growth, proliferation and differentiation. Distinct T cell subsets, however, adopt metabolic programs specific to support their needs. As CD4 T cells coordinate adaptive immune responses while CD8 T cells become cytotoxic effectors, we compared activation-induced proliferation and metabolic reprogramming of these subsets. Resting CD4 and CD8 T cells were metabolically similar and used a predominantly oxidative metabolism. Following activation CD8 T cells proliferated more rapidly. Stimulation led both CD4 and CD8 T cells to sharply increase glucose metabolism and adopt aerobic glycolysis as a primary metabolic program. Activated CD4 T cells, however, remained more oxidative and had greater maximal respiratory capacity than activated CD8 T cells. CD4 T cells were also associated with greater levels of ROS and increased mitochondrial content, irrespective of the activation context. CD8 cells were better able, however, to oxidize glutamine as an alternative fuel source. The more glycolytic metabolism of activated CD8 T cells correlated with increased capacity for growth and proliferation, along with reduced sensitivity of cell growth to metabolic inhibition. These specific metabolic programs may promote greater growth and proliferation of CD8 T cells and enhance survival in diverse nutrient conditions. | 25090630
 |
HIF-1 and c-Src mediate increased glucose uptake induced by endothelin-1 and connexin43 in astrocytes. Valle-Casuso, JC; González-Sánchez, A; Medina, JM; Tabernero, A PloS one
7
e32448
2012
Show Abstract
In previous work we showed that endothelin-1 (ET-1) increases the rate of glucose uptake in astrocytes, an important aspect of brain function since glucose taken up by astrocytes is used to supply the neurons with metabolic substrates. In the present work we sought to identify the signalling pathway responsible for this process in primary culture of rat astrocytes. Our results show that ET-1 promoted an increase in the transcription factor hypoxia-inducible factor-1α (HIF-1α) in astrocytes, as shown in other cell types. Furthermore, HIF-1α-siRNA experiments revealed that HIF-1α participates in the effects of ET-1 on glucose uptake and on the expression of GLUT-1, GLUT-3, type I and type II hexokinase. We previously reported that these effects of ET-1 are mediated by connexin43 (Cx43), the major gap junction protein in astrocytes. Indeed, our results show that silencing Cx43 increased HIF-1α and reduced the effect of ET-1 on HIF-1α, indicating that the effect of ET-1 on HIF-1α is mediated by Cx43. The activity of oncogenes such as c-Src can up-regulate HIF-1α. Since Cx43 interacts with c-Src, we investigated the participation of c-Src in this pathway. Interestingly, both the treatment with ET-1 and with Cx43-siRNA increased c-Src activity. In addition, when c-Src activity was inhibited neither ET-1 nor silencing Cx43 were able to up-regulate HIF-1α. In conclusion, our results suggest that ET-1 by down-regulating Cx43 activates c-Src, which in turn increases HIF-1α leading to the up-regulation of the machinery required to take up glucose in astrocytes. Cx43 expression can be reduced in response not only to ET-1 but also to various physiological and pathological stimuli. This study contributes to the identification of the signalling pathway evoked after Cx43 down-regulation that results in increased glucose uptake in astrocytes. Interestingly, this is the first evidence linking Cx43 to HIF-1, which is a master regulator of glucose metabolism. | 22384254
 |
Connexin43 is involved in the effect of endothelin-1 on astrocyte proliferation and glucose uptake. Sandra Herrero-González,José Carlos Valle-Casuso,Rosa Sánchez-Alvarez,Christian Giaume,José M Medina,Arantxa Tabernero Glia
57
2009
Show Abstract
In previous studies, we showed that endothelin-1 increased astrocyte proliferation and glucose uptake. These effects were similar to those observed with other gap junction inhibitors, such as carbenoxolone (CBX). Because 24-h treatment with endothelin-1 or CBX downregulates the expression of connexin43, the main protein forming astrocytic gap junctions, which can also be involved in proliferation, in this study, we addressed the possible role of connexin43 in the effects of endothelin-1. To do so, connexin43 was silenced in astrocytes by siRNA. The knock down of connexin43 increased the rate of glucose uptake, characterized by the upregulation of GLUT-1 and type I hexokinase. Neither endothelin-1 nor CBX were able to further increase the rate of glucose uptake in connexin43-silenced astrocytes. In agreement, no effects of endothelin-1 and CBX on GLUT-1 and type I hexokinase were observed in connexin-43 silenced astrocytes or in astrocytes from connexin43 knock-out (KO) mice. Our previous studies suggested a close relationship between glucose uptake and astrocyte proliferation. Consistent with this, connexin43-silenced astrocytes exhibited an increase in Ki-67, a marker of proliferation. The effects of ET-1 on retinoblastoma phosphorylation on Ser780 and on the upregulation of cyclins D1 and D3 were affected by the levels of connexin43. In conclusion, our results indicate that connexin43 participates in the effects of endothelin-1 on glucose uptake and proliferation in astrocytes. Interestingly, although the rate of growth in connexin43 KO astrocytes has been reported to be reduced, we observed that an acute reduction in connexin43 by siRNA increased proliferation and glucose uptake. | 18756537
 |
Cleavage of disulfide bonds in mouse spermatogenic cell-specific type 1 hexokinase isozyme is associated with increased hexokinase activity and initiation of sperm motility. Nakamura, N; Miranda-Vizuete, A; Miki, K; Mori, C; Eddy, EM Biology of reproduction
79
537-45
2008
Show Abstract
During epididymal transit, sperm acquire the ability to initiate rapid forward progressive motility on release into the female reproductive tract or physiological media. Glycolysis is the primary source of the ATP necessary for this motility in the mouse, and several novel glycolytic enzymes have been identified that are localized to the principal piece region of the flagellum. One of these is the spermatogenic cell-specific type 1 hexokinase isozyme (HK1S), the only member of the hexokinase enzyme family detected in sperm. Hexokinase activity was found to be lower in immotile sperm immediately after removal from the cauda epididymis (quiescent) than in sperm incubated in physiological medium for 5 min and showing rapid forward progressive motility (activated). However, incubating sperm in medium containing diamide, an inhibitor of disulfide bond reduction, resulted in lower motility and HK activity than in controls. HK1S was present in dimer and monomer forms in extracts of quiescent sperm but mainly as a monomer in motile sperm. A dimer-size band detected in quiescent sperm with phosphotyrosine antibody was not detected in activated sperm, and the monomer-size band was enhanced. In addition, the general protein oxido-reductase thioredoxin-1 was able to catalyze the in vitro conversion of HK1S dimers to the monomeric form. These results strongly suggest that cleavage of disulfide bonds in HK1S dimers contributes to the increases in HK activity and motility that occur when mouse sperm become activated. | 18509164
 |
Localization of the type III isozyme of hexokinase at the nuclear periphery. Preller, A and Wilson, J E Arch. Biochem. Biophys., 294: 482-92 (1992)
1992
Show Abstract
The distribution of the type III isozyme of hexokinase (ATP:D-hexose 6-phosphotransferase, EC 2.7.1.1) in rat kidney, liver, spleen, lung, and brain was determined immunohistochemically, using a monoclonal antibody generated against the enzyme purified from rat Novikoff hepatoma.In all tissues, specific cell types exhibited intense staining at the nuclear periphery, as confirmed by analysis using confocal microscopy. Isolated nuclei from kidney or liver were devoid of detectable type III hexokinase, although the enzyme was found in the "soluble" fraction from kidney or liver homogenates; these results suggest that the type III isozyme is associated in a labile manner with the external surface of the nucleus, with this association being disrupted by conventional homogenization and nuclear isolation procedures. The nuclear localization of the type III isozyme contrasts with previously demonstrated association of the type I and II isozymes with mitochondria. The physiological significance of a nuclear localization for the type III isozyme remains unclear. However, it was noted that many of the cells exhibiting prominent nuclear staining for type III hexokinase are endothelial or epithelial cells, suggesting a possible relationship between nuclear type III hexokinase and transport functions which are prominent in such cells. | 1567204
 |