shRNA targeting α-synuclein prevents neurodegeneration in a Parkinson's disease model. Zharikov, AD; Cannon, JR; Tapias, V; Bai, Q; Horowitz, MP; Shah, V; El Ayadi, A; Hastings, TG; Greenamyre, JT; Burton, EA The Journal of clinical investigation
125
2721-35
2015
Show Abstract
Multiple convergent lines of evidence implicate both α-synuclein (encoded by SCNA) and mitochondrial dysfunction in the pathogenesis of sporadic Parkinson's disease (PD). Occupational exposure to the mitochondrial complex I inhibitor rotenone increases PD risk; rotenone-exposed rats show systemic mitochondrial defects but develop specific neuropathology, including α-synuclein aggregation and degeneration of substantia nigra dopaminergic neurons. Here, we inhibited expression of endogenous α-synuclein in the adult rat substantia nigra by adeno-associated virus-mediated delivery of a short hairpin RNA (shRNA) targeting the endogenous rat Snca transcript. Knockdown of α-synuclein by ~35% did not affect motor function or cause degeneration of nigral dopaminergic neurons in control rats. However, in rotenone-exposed rats, progressive motor deficits were substantially attenuated contralateral to α-synuclein knockdown. Correspondingly, rotenone-induced degeneration of nigral dopaminergic neurons, their dendrites, and their striatal terminals was decreased ipsilateral to α-synuclein knockdown. These data show that α-synuclein knockdown is neuroprotective in the rotenone model of PD and indicate that endogenous α-synuclein contributes to the specific vulnerability of dopaminergic neurons to systemic mitochondrial inhibition. Our findings are consistent with a model in which genetic variants influencing α-synuclein expression modulate cellular susceptibility to environmental exposures in PD patients. shRNA targeting the SNCA transcript should be further evaluated as a possible neuroprotective therapy in PD. | | | 26075822
|
Dystroglycan controls dendritic morphogenesis of hippocampal neurons in vitro. Bijata, M; Wlodarczyk, J; Figiel, I Frontiers in cellular neuroscience
9
199
2015
Show Abstract
Dendritic outgrowth and arborization are important for establishing neural circuit formation. To date, little information exists about the involvement of the extracellular matrix (ECM) and its cellular receptors in these processes. In our studies, we focus on the role of dystroglycan (DG), a cell adhesion molecule that links ECM components to the actin cytoskeleton, in dendritic development and branching. Using a lentiviral vector to deliver short-hairpin RNA (shRNA) that specifically silences DG in cultured hippocampal neurons, we found that DG knockdown exerted an inhibitory effect on dendritic tree growth and arborization. The structural changes were associated with activation of the guanosine triphosphatase Cdc42. The overexpression of DG promoted dendritic length and branching. Furthermore, exposure of the cultures to autoactivating matrix metalloproteinase-9 (aaMMP-9), a β-DG-cleaving protease, decreased the complexity of dendritic arbors. This effect was abolished in neurons that overexpressed a β-DG mutant that was defective in MMP-9-mediated cleavage. Altogether, our results indicate that DG controls dendritic arborization in vitro in MMP-9-dependent manner. | | | 26074769
|
SNSMIL, a real-time single molecule identification and localization algorithm for super-resolution fluorescence microscopy. Tang, Y; Dai, L; Zhang, X; Li, J; Hendriks, J; Fan, X; Gruteser, N; Meisenberg, A; Baumann, A; Katranidis, A; Gensch, T Scientific reports
5
11073
2015
Show Abstract
Single molecule localization based super-resolution fluorescence microscopy offers significantly higher spatial resolution than predicted by Abbe's resolution limit for far field optical microscopy. Such super-resolution images are reconstructed from wide-field or total internal reflection single molecule fluorescence recordings. Discrimination between emission of single fluorescent molecules and background noise fluctuations remains a great challenge in current data analysis. Here we present a real-time, and robust single molecule identification and localization algorithm, SNSMIL (Shot Noise based Single Molecule Identification and Localization). This algorithm is based on the intrinsic nature of noise, i.e., its Poisson or shot noise characteristics and a new identification criterion, QSNSMIL, is defined. SNSMIL improves the identification accuracy of single fluorescent molecules in experimental or simulated datasets with high and inhomogeneous background. The implementation of SNSMIL relies on a graphics processing unit (GPU), making real-time analysis feasible as shown for real experimental and simulated datasets. | | | 26098742
|
Erythropoietin produced by genetic-modified NIH/3T3 fibroblasts enhances the survival of degenerating neurons. Li, YC; Chen, SJ; Chien, CL Brain and behavior
5
e00356
2015
Show Abstract
Erythropoietin (EPO) has potent neuroprotective effects. The short-term delivery of high-dose EPO seemed to improve patients' neuromuscular functions; however, excessive EPO resulted in systematically high hematocrit and thrombotic risk. In our study, we established a cellular material for future in vivo studies of neurodegenerative diseases based on EPO provided regionally at a nontoxic level.A mouse EPO cDNA was subcloned into the pCMS-EGFP vector and transfected into NIH/3T3 fibroblasts to design a biological provider that can regionally release EPO for the treatment of neurological diseases. After G418 selection, a stable EPO-overexpressing cell line, EPO-3T3-EGFP, was established. To further confirm the neuroprotective abilities of secreted EPO from EPO-3T3-EGFP cells, a cell model of neurodegeneration, PC12-INT-EGFP, was applied.The expression level of EPO was highly elevated in EPO-3T3-EGFP cells, and an abundant amount of EPO secreted from EPO-3T3-EGFP cells was detected in the extracellular milieu. After supplementation with conditioned medium prepared from EPO-3T3-EGFP cells, the survival rate of PC12-INT-EGFP cells was significantly enhanced. Surprisingly, a fraction of aggregated cytoskeletal EGFP-tagged α-internexin in PC12-INT-EGFP cells was disaggregated and transported into neurites dynamically. The immunocytochemical distribution of IF proteins, including NF-M, phosphorylated-NF-M, and the α-INT-EGFP fusion protein, were less aggregated in the perikaryal region and transported into neurites after the EPO treatment.The established EPO-overexpressing NIH/3T3 cell line, EPO-3T3-EGFP, may provide a material for future studies of cell-based therapies for neurodegenerative diseases via the secretion of EPO on a short-term, high-dose, regional basis. | | | 26357589
|
Midkine-a protein localization in the developing and adult retina of the zebrafish and its function during photoreceptor regeneration. Gramage, E; D'Cruz, T; Taylor, S; Thummel, R; Hitchcock, PF PloS one
10
e0121789
2015
Show Abstract
Midkine is a heparin binding growth factor with important functions in neuronal development and survival, but little is known about its function in the retina. Previous studies show that in the developing zebrafish, Midkine-a (Mdka) regulates cell cycle kinetics in retinal progenitors, and following injury to the adult zebrafish retina, mdka is strongly upregulated in Müller glia and the injury-induced photoreceptor progenitors. Here we provide the first data describing Mdka protein localization during different stages of retinal development and during the regeneration of photoreceptors in adults. We also experimentally test the role of Mdka during photoreceptor regeneration. The immuno-localization of Mdka reflects the complex spatiotemporal pattern of gene expression and also reveals the apparent secretion and extracellular trafficking of this protein. During embryonic retinal development the Mdka antibodies label all mitotically active cells, but at the onset of neuronal differentiation, immunostaining is also localized to the nascent inner plexiform layer. Starting at five days post fertilization through the juvenile stage, Mdka immunostaining labels the cytoplasm of horizontal cells and the overlying somata of rod photoreceptors. Double immunolabeling shows that in adult horizontal cells, Mdka co-localizes with markers of the Golgi complex. Together, these data are interpreted to show that Mdka is synthesized in horizontal cells and secreted into the outer nuclear layer. In adults, Mdka is also present in the end feet of Müller glia. Similar to mdka gene expression, Mdka in horizontal cells is regulated by circadian rhythms. After the light-induced death of photoreceptors, Mdka immuonolabeling is localized to Müller glia, the intrinsic stem cells of the zebrafish retina, and proliferating photoreceptor progenitors. Knockdown of Mdka during photoreceptor regeneration results in less proliferation and diminished regeneration of rod photoreceptors. These data suggest that during photoreceptor regeneration Mdka regulates aspects of injury-induced cell proliferation. | | | 25803551
|
Polarity-dependent asymmetric distribution and MEX-5/6-mediated translational activation of the Era-1 mRNA in C. elegans embryos. Spiró, Z; Gönczy, P PloS one
10
e0120984
2015
Show Abstract
The early C. elegans embryo is an attractive model system to investigate fundamental developmental processes. With the exception of mex-3 mRNA, maternally contributed mRNAs are thought to be distributed uniformly in the one-cell embryo. Here, we report and characterize the striking distribution of the mRNA encoding the novel protein ERA-1. We found that era-1 mRNA is enriched in the anterior of the one-cell embryo and present solely in anterior blastomeres thereafter. Although era-1 is not an essential gene, we uncovered that era-1 null mutant embryos are sensitive to slight impairment of embryonic polarity. We found that the asymmetric distribution of era-1 mRNA depends on anterior-posterior polarity cues and on the era-1 3'UTR. Similarly to the era-1 mRNA, the YFP-ERA-1 protein is enriched in anterior blastomeres. Interestingly, we found that the RNA-binding protein MEX-5 is required for era-1 mRNA asymmetry. Furthermore, we show that MEX-5, together with its partially redundant partner MEX-6, are needed to activate era-1 mRNA translation in anterior blastomeres. These findings lead us to propose that MEX-5/6-mediated regulation of era-1 mRNA contributes to robust embryonic development. | | | 25821955
|
Channel-mediated astrocytic glutamate modulates hippocampal synaptic plasticity by activating postsynaptic NMDA receptors. Park, H; Han, KS; Seo, J; Lee, J; Dravid, SM; Woo, J; Chun, H; Cho, S; Bae, JY; An, H; Koh, W; Yoon, BE; Berlinguer-Palmini, R; Mannaioni, G; Traynelis, SF; Bae, YC; Choi, SY; Lee, CJ Molecular brain
8
7
2015
Show Abstract
Activation of G protein coupled receptor (GPCR) in astrocytes leads to Ca(2+)-dependent glutamate release via Bestrophin 1 (Best1) channel. Whether receptor-mediated glutamate release from astrocytes can regulate synaptic plasticity remains to be fully understood.We show here that Best1-mediated astrocytic glutamate activates the synaptic N-methyl-D-aspartate receptor (NMDAR) and modulates NMDAR-dependent synaptic plasticity. Our data show that activation of the protease-activated receptor 1 (PAR1) in hippocampal CA1 astrocytes elevates the glutamate concentration at Schaffer collateral-CA1 (SC-CA1) synapses, resulting in activation of GluN2A-containing NMDARs and NMDAR-dependent potentiation of synaptic responses. Furthermore, the threshold for inducing NMDAR-dependent long-term potentiation (LTP) is lowered when astrocytic glutamate release accompanied LTP induction, suggesting that astrocytic glutamate is significant in modulating synaptic plasticity.Our results provide direct evidence for the physiological importance of channel-mediated astrocytic glutamate in modulating neural circuit functions. | | | 25645137
|
Nkx2.2 and Nkx2.9 are the key regulators to determine cell fate of branchial and visceral motor neurons in caudal hindbrain. Jarrar, W; Dias, JM; Ericson, J; Arnold, HH; Holz, A PloS one
10
e0124408
2015
Show Abstract
Cranial motor nerves in vertebrates are comprised of the three principal subtypes of branchial, visceral, and somatic motor neurons, which develop in typical patterns along the anteroposterior and dorsoventral axes of hindbrain. Here we demonstrate that the formation of branchial and visceral motor neurons critically depends on the transcription factors Nkx2.2 and Nkx2.9, which together determine the cell fate of neuronal progenitor cells. Disruption of both genes in mouse embryos results in complete loss of the vagal and spinal accessory motor nerves, and partial loss of the facial and glossopharyngeal motor nerves, while the purely somatic hypoglossal and abducens motor nerves are not diminished. Cell lineage analysis in a genetically marked mouse line reveals that alterations of cranial nerves in Nkx2.2; Nkx2.9 double-deficient mouse embryos result from changes of cell fate in neuronal progenitor cells. As a consequence progenitors of branchiovisceral motor neurons in the ventral p3 domain of hindbrain are transformed to somatic motor neurons, which use ventral exit points to send axon trajectories to their targets. Cell fate transformation is limited to the caudal hindbrain, as the trigeminal nerve is not affected in double-mutant embryos suggesting that Nkx2.2 and Nkx2.9 proteins play no role in the development of branchiovisceral motor neurons in hindbrain rostral to rhombomere 4. | | | 25919494
|
Fiber-modified adenovirus for central nervous system Parkinson's disease gene therapy. Lewis, TB; Glasgow, JN; Harms, AS; Standaert, DG; Curiel, DT Viruses
6
3293-310
2014
Show Abstract
Gene-based therapies for neurological diseases continue to develop briskly. As disease mechanisms are elucidated, flexible gene delivery platforms incorporating transcriptional regulatory elements, therapeutic genes and targeted delivery are required for the safety and efficacy of these approaches. Adenovirus serotype 5 (Ad5)-based vectors can carry large genetic payloads to provide this flexibility, but do not transduce neuronal cells efficiently. To address this, we have developed a tropism-modified Ad5 vector with neuron-selective targeting properties for evaluation in models of Parkinson disease therapy. A panel of tropism-modified Ad5 vectors was screened for enhanced gene delivery in a neuroblastoma cell line model system. We used these observations to design and construct an unbiased Ad vector platform, consisting of an unmodified Ad5 and a tropism-modified Ad5 vector containing the fiber knob domain from canine Ad serotype 2 (Ad5-CGW-CK2). Delivery to the substantia nigra or striatum showed that this vector produced a neuronally-restricted pattern of gene expression. Many of the transduced neurons were from regions with afferent projections to the injection site, implicating that the vector binds the presynaptic terminal resulting in presynaptic transduction. We show that Ad5-CGW-CK2 can selectively transduce neurons in the brain and hypothesize that this modular platform is potentially adaptable to clinical use. | | | 25196484
|
Proteomic screening of glutamatergic mouse brain synaptosomes isolated by fluorescence activated sorting. Biesemann, C; Grønborg, M; Luquet, E; Wichert, SP; Bernard, V; Bungers, SR; Cooper, B; Varoqueaux, F; Li, L; Byrne, JA; Urlaub, H; Jahn, O; Brose, N; Herzog, E The EMBO journal
33
157-70
2014
Show Abstract
For decades, neuroscientists have used enriched preparations of synaptic particles called synaptosomes to study synapse function. However, the interpretation of corresponding data is problematic as synaptosome preparations contain multiple types of synapses and non-synaptic neuronal and glial contaminants. We established a novel Fluorescence Activated Synaptosome Sorting (FASS) method that substantially improves conventional synaptosome enrichment protocols and enables high-resolution biochemical analyses of specific synapse subpopulations. Employing knock-in mice with fluorescent glutamatergic synapses, we show that FASS isolates intact ultrapure synaptosomes composed of a resealed presynaptic terminal and a postsynaptic density as assessed by light and electron microscopy. FASS synaptosomes contain bona fide glutamatergic synapse proteins but are almost devoid of other synapse types and extrasynaptic or glial contaminants. We identified 163 enriched proteins in FASS samples, of which FXYD6 and Tpd52 were validated as new synaptic proteins. FASS purification thus enables high-resolution biochemical analyses of specific synapse subpopulations in health and disease. | | | 24413018
|