Po zamknięciu konfiguracja nie zostanie zapisana, chyba że artykuł zostanie dodany do koszyka lub do ulubionych.
Kliknij OK, aby zamknąć narzędzie MILLIPLEX® MAP lub Anuluj, aby wrócić do wyboru.
Wybierz personalizowane panele i wstępnie zmieszane zestawy – LUB – MAPmates™ do sygnalizacji komórkowej
Zaprojektuj i wyceń swoje zestawy MILLIPLEX® MAP.
Panele podlegające personalizacji i zestawy wstępnie zmieszane
Nasza szeroka gama produktów składa się z paneli multipleksów, które pozwalają Ci wybierać, w ramach panelu, anality, które najlepiej pasują do Twoich potrzeb. W oddzielnej zakładce można wybrać wstępnie zmieszane cytokiny lub zestaw pojedynczego pleksu.
Zestawy dot. sygnalizacji komórkowej oraz MAPmates™
Wybierz gotowe zestawy, które pozwolą Ci badać całe szlaki lub procesy. Lub zaprojektuj swoje własne zestawy, wybierając jednopleksowe MAPmates™, zgodnie z podanymi wytycznymi.
Następujących MAPmates™ nie należy łączyć: -MAPmates™, które wymagają innego buforu do oznaczenia -Fosfospecyficzne i całkowite pary MAPmate™, np. całkowite GSK3β oraz GSK3β (Ser 9) -PanTyr i MAPmates™ specyficzne względem miejsca, np. receptora fosfo-EGF i fosfo-STAT1 (Tyr701) -Więcej niż 1 phospho-MAPmate™ dla jednego celu (Akt, STAT3) -GAPDH oraz β-Tubulin nie mogą być łączone z zestawami lub MAPmates™ zawierającymi panTyr
.
Numer katalogowy
Opis zamawiania
Ilość/opak.
Lista
Ten artykuł został dodany do ulubionych.
Wybierz gatunek, typ panelu, zestaw lub rodzaj próbki
Aby rozpocząć projektowanie zestawu MILLIPLEX® MAP, należy wybrać gatunek, typ panelu lub interesujący nas zestaw.
Custom Premix Selecting "Custom Premix" option means that all of the beads you have chosen will be premixed in manufacturing before the kit is sent to you.
Catalogue Number
Ordering Description
Qty/Pack
List
Ten artykuł został dodany do ulubionych.
Gatunek
Typ panelu
Wybrany zestaw
Ilość
Numer katalogowy
Opis zamawiania
Ilość/opak.
Lista cen
96-Well Plate
Ilość
Numer katalogowy
Opis zamawiania
Ilość/opak.
Lista cen
Dodaj dodatkowe odczynniki (Do użycia z MAPmates wymagany jest bufor i zestaw do detekcji)
Ilość
Numer katalogowy
Opis zamawiania
Ilość/opak.
Lista cen
48-602MAG
Buffer Detection Kit for Magnetic Beads
1 Kit
Opcja oszczędzająca miejsce Klienci kupujący kilka zestawów mogą wybrać oszczędność przestrzeni koniecznej do przechowywania przez eliminację opakowania zestawu i otrzymanie komponentów oznaczenia multipleksowego w plastikowych torbach, co umożliwi bardziej kompaktowe przechowywanie.
Ten artykuł został dodany do ulubionych.
Produkt został dodany do koszyka
Możesz teraz spersonalizować inny zestaw, wybrać zestaw wstępnie przygotowany, wylogować się lub zamknąć zamówienie.
Attention: We have moved. Merck Millipore products are no longer available for purchase on MerckMillipore.com.Learn More
Two groups of prolactinoma cell lines were identified. One group (responder) expresses both D(2) dopamine receptors and an autocrine loop mediated by nerve growth factor (NGF) and one group (nonresponder) lacks both D(2) receptors and NGF production. D(2) receptor expression in these cell lines is dependent on NGF. Indeed, NGF inactivation in responder cells decreases D(2) receptor density, while NGF treatment induces D(2) receptor expression in nonresponders. Here we show that inactivation of p75(NGFR), but not of trkA, resulted in D(2) receptor loss in responder cells and prevented D(2) receptor expression induced by NGF in the nonresponder. Analysis of nuclear factor-kappaB (NF-kappaB) nuclear accumulation and binding to corresponding DNA consensus sequences indicated that in NGF-secreting responder cells, but not in nonresponders, NF-kappaB is constitutively activated. Moreover, NGF treatment of nonresponder cells induced both nuclear translocation and DNA binding activity of NF-kappaB complexes containing p50, p65/RelA, and cRel subunits, an effect prevented by anti-p75(NGFR) antibodies. Disruption of NF-kappaB nuclear translocation by SN50 remarkably impaired D(2) receptor expression in responder cells and prevented D(2) gene expression induced by NGF in nonresponders. These data indicate that in prolactinoma cells the effect of NGF on D(2) receptor expression is mediated by p75(NGFR) in a trkA-independent way and that NGF stimulation of p75(NGFR) activates NF-kappaB, which is required for D(2) gene expression. We thus suggest that NF-kappaB is a key transcriptional regulator of the D(2) gene and that this mechanism may not be confined to pituitary tumors, but could also extend to other dopaminergic systems.
Human bone marrow stromal cells have been examined with an immuno-electron microscopy technique in order to better define their structure and function in normal hematopoiesis. Bone marrow fragments from normal donors, after mild permeabilization and glutaraldehyde prefixation were labeled with the Me20.4 Mab, which recognizes the low affinity nerve growth factor (NGFR) and was recently described as specifically identifying fibroblastic-like bone marrow stromal cells. Five nm gold immuno-conjugates served as markers. NGFR+ cells were showing either a star-shape, with long and convoluted dendritic projections, and branching with each other to form a complex system of lacunae upon which hematopoietic cells were arranged. Other NGFR+ cells had an elongated spindle-like morphology. NGFR+ dendrites were seen in close contact with each other and with the different hematopoietic cells, although definite junctions were never noticed. NGFR+ dendrites were also observed surrounding mature plasma cells, in close apposition with adipocytes or surrounding bone marrow sinusoids. These findings may give some clues about the function of the bone marrow stromal cells, which are known to be involved in the homing and recirculation of hemopoietic cells; in addition, the presence and distribution of NGFR in the bone marrow stroma may support the recent evidence of a co-stimulatory effect of NGF in early hematopoiesis.
The functions of the low-affinity p75 nerve growth factor receptor (p75(NGFR)) in the central nervous system were explored in vivo. In normal mice, approximately 25 percent of the cholinergic basal forebrain neurons did not express TrkA and died between postnatal day 6 and 15. This loss did not occur in p75(NGFR)-deficient mice or in normal mice systemically injected with a p75(NGFR)-inhibiting peptide. Control, but not p75(NGFR)-deficient, mice also had fewer cholinergic striatal interneurons. Apparently, p75(NGFR) mediates apoptosis of these developing neurons in the absence of TrkA, and modulation of p75(NGFR) can promote neuronal survival. Cholinergic basal forebrain neurons are involved in learning and memory.
The skin constitutes the largest sensorial organ. Its nervous system consists of different types of afferent nerve fibers which spread out immediately beneath the skin surface to sense temperature, touch and pain.
The effects on anatomy and behavior of a ribosomal inactivating protein (saporin) coupled to a monoclonal antibody against the low-affinity NGF receptor (NGFr) were examined. In adult rats, NGFr is expressed predominantly in cholinergic neurons of the medial septal area (MSA), diagonal band nuclei, and nucleus basalis magnocellularis (nBM), but also in noncholinergic cerebellar Purkinje cells. Rats with immunotoxin injections to the MSA, nBM, and lateral ventricle were compared to controls on a spatial and cued reference memory task in the Morris maze. Toxin injections to the MSA slightly impaired the initial, but not asymptotic, phase of spatial navigation. Injections to the nBM impaired all phases of spatial navigation. Cued navigation, however, was not affected in either the MSA or nBM group. The ventricular injections severely affected spatial and cued navigation. Acetylcholinesterase (AChE) histochemistry and NGFr and choline acetyltransferase immunohistochemistry revealed a loss of (1) almost all NGFr-positive cholinergic neurons in the MSA and AChE fibers in hippocampus (MSA group); (2) almost all NGFr neurons in the nBM, some in the MSA, most AChE fibers in neocortex and some in the hippocampus (nBM group), and (3) almost all NGFr neurons in the MSA and nBM and their corresponding hippocampal and cortical AChE fibers (ventricular group). Cholinergic nBM projections to the amygdala were largely preserved in all groups. The amount of cholinergic fiber loss in the cortex correlated modestly, but significantly, with the severity of impairment of the asymptotic phase of performance of the spatial task. An unambiguous interpretation of the anatomical locus of behavioral deficits was not possible because of damage to cholinergic striatal interneurons (nBM group) and to noncholinergic cerebellar Purkinje cells (ventricular group). These data suggest that the cholinergic cortical system is critical to the performance of this spatial memory task. Cholinergic denervation of the hippocampus alone, however, is not sufficient to impair markedly performance of this task.