Human primordial germ cell commitment in vitro associates with a unique PRDM14 expression profile. Sugawa, F; Araúzo-Bravo, MJ; Yoon, J; Kim, KP; Aramaki, S; Wu, G; Stehling, M; Psathaki, OE; Hübner, K; Schöler, HR The EMBO journal
34
1009-24
2015
Pokaż streszczenie
Primordial germ cells (PGCs) develop only into sperm and oocytes in vivo. The molecular mechanisms underlying human PGC specification are poorly understood due to inaccessibility of cell materials and lack of in vitro models for tracking the earliest stages of germ cell development. Here, we describe a defined and stepwise differentiation system for inducing pre-migratory PGC-like cells (PGCLCs) from human pluripotent stem cells (PSCs). In response to cytokines, PSCs differentiate first into a heterogeneous mesoderm-like cell population and then into PGCLCs, which exhibit minimal PRDM14 expression. PGC specification in humans is similar to the murine process, with the sequential activation of mesodermal and PGC genes, and the suppression of neural induction and of de novo DNA methylation, suggesting that human PGC formation is induced via epigenesis, the process of germ cell specification via inductive signals from surrounding somatic cells. This study demonstrates that PGC commitment in humans shares key features with that of the mouse, but also highlights key differences, including transcriptional regulation during the early stage of human PGC development (3-6 weeks). A more comprehensive understanding of human germ cell development may lead to methodology for successfully generating PSC-derived gametes for reproductive medicine. | 25750208
|
Primordial germ cell-like cells differentiated in vitro from skin-derived stem cells. Linher, K; Dyce, P; Li, J PloS one
4
e8263
2009
Pokaż streszczenie
We have previously demonstrated that stem cells isolated from fetal porcine skin have the potential to form oocyte-like cells (OLCs) in vitro. However, primordial germ cells (PGCs), which must also be specified during the stem cell differentiation to give rise to these putative oocytes at more advanced stages of culture, were not systematically characterized. The current study tested the hypothesis that a morphologically distinct population of cells derived from skin stem cells prior to OLC formation corresponds to putative PGCs, which differentiate further into more mature gametes.When induced to differentiate in an appropriate microenvironment, a subpopulation of morphologically distinct cells, some of which are alkaline phosphatase (AP)-positive, also express Oct4, Fragilis, Stella, Dazl, and Vasa, which are markers indicative of germ cell formation. A known differentially methylated region (DMR) within the H19 gene locus, which is demethylated in oocytes after establishment of the maternal imprint, is hypomethylated in PGC-like cells compared to undifferentiated skin-derived stem cells, suggesting that the putative germ cell population undergoes imprint erasure. Additional evidence supporting the germ cell identity of in vitro-generated PGC-like cells is that, when labeled with a Dazl-GFP reporter, these cells further differentiate into GFP-positive OLCs.The ability to generate germ cell precursors from somatic stem cells may provide an in vitro model to study some of the unanswered questions surrounding early germ cell formation. | 20011593
|
Oct-4 regulates the expression of Stella and Foxj2 at the Nanog locus: implications for the developmental competence of mouse oocytes. Maurizio Zuccotti,Valeria Merico,Lucia Sacchi,Michele Bellone,Thore C Brink,Mario Stefanelli,Carlo Alberto Redi,Riccardo Bellazzi,James Adjaye,Silvia Garagna Human reproduction (Oxford, England)
24
2009
Pokaż streszczenie
Our knowledge of what determines the mammalian oocyte developmental competence is meagre. By comparing the transcriptional profiles of developmentally competent surrounded nucleolus (SN) and incompetent not surrounded nucleolus (NSN) mouse MII oocytes, we recently demonstrated that Oct-4 and Stella are key factors in the establishment of the oocytes' developmental competence. | 19477878
|
Stella is a maternal effect gene required for normal early development in mice. Payer, Bernhard, et al. Curr. Biol., 13: 2110-7 (2003)
2003
Pokaż streszczenie
stella is a novel gene specifically expressed in primordial germ cells, oocytes, preimplantation embryos, and pluripotent cells. It encodes a protein with a SAP-like domain and a splicing factor motif-like structure, suggesting possible roles in chromosomal organization or RNA processing. Here, we have investigated the effects of a targeted mutation of stella in mice. We show that while matings between heterozygous animals resulted in the birth of apparently normal stella null offspring, stella-deficient females displayed severely reduced fertility due to a lack of maternally inherited Stella-protein in their oocytes. Indeed, we demonstrate that embryos without Stella are compromised in preimplantation development and rarely reach the blastocyst stage. stella is thus one of few known mammalian maternal effect genes, as the phenotypic effect on embryonic development is mainly a consequence of the maternal stella mutant genotype. Furthermore, we show that STELLA that is expressed in human oocytes is also expressed in human pluripotent cells and in germ cell tumors. Interestingly, human chromosome 12p, which harbours STELLA, is consistently overrepresented in these tumors. These findings suggest a similar role for STELLA during early human development as in mice and a potential involvement in germ cell tumors. | 14654002
|