Endothelial VEGF sculpts cortical cytoarchitecture. Li, S; Haigh, K; Haigh, JJ; Vasudevan, A The Journal of neuroscience : the official journal of the Society for Neuroscience
33
14809-15
2013
Pokaż streszczenie
Current models of brain development support the view that VEGF, a signaling protein secreted by neuronal cells, regulates angiogenesis and neuronal development. Here we demonstrate an autonomous and pivotal role for endothelial cell-derived VEGF that has far-reaching consequences for mouse brain development. Selective deletion of Vegf from endothelial cells resulted in impaired angiogenesis and marked perturbation of cortical cytoarchitecture. Abnormal cell clusters or heterotopias were detected in the marginal zone, and disorganization of cortical cells induced several malformations, including aberrant cortical lamination. Critical events during brain development-neuronal proliferation, differentiation, and migration were significantly affected. In addition, axonal tracts in the telencephalon were severely defective in the absence of endothelial VEGF. The unique roles of endothelial VEGF cannot be compensated by neuronal VEGF and underscores the high functional significance of endothelial VEGF for cerebral cortex development and from disease perspectives. | Immunohistochemistry | 24027281
 |
Expression and immunolocalization of Gpnmb, a glioma-associated glycoprotein, in normal and inflamed central nervous systems of adult rats. Huang, JJ; Ma, WJ; Yokoyama, S Brain and behavior
2
85-96
2011
Pokaż streszczenie
Glycoprotein nonmetastatic melanoma B (Gpnmb) is a type I transmembrane protein implicated in cell differentiation, inflammation, tissue regeneration, and tumor progression. Gpnmb, which is highly expressed in glioblastoma cells, is a potential therapeutic target. However, little is known about its expression, cellular localization, and roles in non-tumorous neural tissues. In this study, we examined Gpnmb expression in the central nervous system of adult rats under both normal and inflammatory conditions. Reverse transcription-polymerase chain reaction analysis revealed that Gpnmb mRNA was expressed in the cerebrum, cerebellum, brain stem, and spinal cord of normal adult rats. Immunoperoxidase staining revealed that Gpnmb-immunoreactive cells were widely distributed in the parenchyma of all brain regions examined, with the cells being most prevalent in the hippocampal dentate gyrus, cerebellar cortex, spinal dorsal horn, choroid plexus, ependyma, periventricular regions, and in layers II and III of the cerebral cortex. Double immunofluorescence staining showed that these cells were co-stained most frequently with the microglia/macrophage marker OX42, and occasionally with the radial glia marker RC2 or the neuronal marker NeuN. Furthermore, an intraperitoneal injection of bacterial endotoxin lipopolysaccharide increased the number of Gpnmb and OX42 double-positive cells in the area postrema, which is one of the circumventricular organs, indicating infiltration of hematogenous macrophages. These results suggest that Gpnmb, which is expressed in microglia and macrophages in non-tumorous neural tissues, plays an important role in the regulation of immune/inflammatory responses. | | 22574278
 |
The endocannabinoid system promotes astroglial differentiation by acting on neural progenitor cells. Aguado, Tania, et al. J. Neurosci., 26: 1551-61 (2006)
2005
Pokaż streszczenie
Endocannabinoids exert an important neuromodulatory role via presynaptic cannabinoid CB1 receptors and may also participate in the control of neural cell death and survival. The function of the endocannabinoid system has been extensively studied in differentiated neurons, but its potential role in neural progenitor cells remains to be elucidated. Here we show that the CB1 receptor and the endocannabinoid-inactivating enzyme fatty acid amide hydrolase are expressed, both in vitro and in vivo, in postnatal radial glia (RC2+ cells) and in adult nestin type I (nestin(+)GFAP+) neural progenitor cells. Cell culture experiments show that CB1 receptor activation increases progenitor proliferation and differentiation into astroglial cells in vitro. In vivo analysis evidences that, in postnatal CB1(-/-) mouse brain, progenitor proliferation and astrogliogenesis are impaired. Likewise, in adult CB1-deficient mice, neural progenitor proliferation is decreased but is increased in fatty acid amide hydrolase-deficient mice. In addition, endocannabinoid signaling controls neural progenitor differentiation in the adult brain by promoting astroglial differentiation of newly born cells. These results show a novel physiological role of endocannabinoids, which constitute a new family of signaling cues involved in the regulation of neural progenitor cell function. | | 16452678
 |