Basigin-mediated redistribution of CD98 promotes cell spreading and tumorigenicity in hepatocellular carcinoma. Wu, B; Wang, Y; Yang, XM; Xu, BQ; Feng, F; Wang, B; Liang, Q; Li, Y; Zhou, Y; Jiang, JL; Chen, ZN Journal of experimental & clinical cancer research : CR
34
110
2015
Pokaż streszczenie
Dysregulated endocytosis of membrane proteins contributes significantly to several hallmarks of cancer. Basigin can enhance cancer progression, but its precise mechanism remains unclear. CD98 promotes cell spreading and tumorigenicity by triggering integrin clustering and enhancing cell adhesion to the extracellular matrix. The endocytosis and recyle of basigin and CD98 might play critical roles in cancer.The role of CD98 was confirmed in liver cancer cells by cell spreading in vitro and tumorigenicity by nude mice xenograft tumor assay in vivo; membrane expression of basigin and CD98 in SMMC-7721 was measured by FCAS; pull down and SPR analysis were uses to reveal the direct association between basigin and CD98; DsRed1 tagged CD98 was blocked in the cytoplasm in K7721 (whose basigin was knockn out) and had a well colocalization with ER and Rab5a positive recycling endosomes under co-focal; finally, by FRET imaging and FCAS we observed the internalization of basigin and CD98 was flotillin-1-regulated, and their recycle at early steps was Arf6-mediated.Basigin and CD98 were highly expressed and co-localized on the human hepatocellular carcinoma (HCC) cell membrane; basigin can directly bind to CD98, mediating CD98 redistribution on the HCC cell membrane and activating the downstream integrin signaling pathway. Internalization of basigin and CD98 was flotillin-1 regulated the and their recycling was mediated by Arf6. This recycling process for basigin and CD98 promotes cell spreading and tumor growth in liver cancer xenografts.Basigin, as a redistribution chaperone of CD98, plays a critical role in promoting cell spreading and the progression of hepatocellular carcinoma. | | | 26437640
 |
Regulation of ionizing radiation-induced adhesion of breast cancer cells to fibronectin by alpha5beta1 integrin. Lee, SH; Cheng, H; Yuan, Y; Wu, S Radiation research
181
650-8
2014
Pokaż streszczenie
Ionizing radiation (IR) is commonly used for cancer therapy, however, its potential influence on cancer metastatic potential remains controversial. In this study, we elucidated the role of integrins in regulation of IR-altered adhesion between breast cancer cells and extracellular matrix (ECM) proteins, which is a key step in the initial phase of metastasis. Our data suggest that the extent of effect that ionizing radiation had on cell adhesion depended on the genetic background of the breast cancer cells. Ionizing radiation was a better adhesion inducer for p53-mutated cells, such as MDA-MB-231 cells, than for p53 wild-type cells, such as MCF-7 cells. While IR-induced adhesions between MDA-MB-231 cells to fibronectin, laminin, collagen I and collagen IV, only blocking of the adhesion between α5β1 integrin and fibronectin using anti-α5β1 integrin antibody could completely inhibit the radiation-induced adhesion of the cells. A soluble Arg-Gly-Asp peptide, the binding motif for fibronectin binding integrins, could also reduce the adhesion of the cells to fibronectin with or without ionizing radiation exposure. The inhibition of the cell-fibronectin interaction also affected, but did not always correlate with, transwell migration of the cancer cells. In addition, our data showed that the total expression of α5 integrin and surface expression of α5β1 integrin were increased in the cells treated with ionizing radiation. The increased surface expression of α5β1 integrin, along with the adhesion between the cells and fibronectin, could be inhibited by both ataxia telangiectasia mutated (ATM) and Rad3-related (ATR) kinase inhibitors. These results suggested that ATM/ATR-mediated surface expression of α5β1 integrin might play a central role in regulation of ionizing radiation-altered adhesion. | | | 24785587
 |
Elevated expression of syntenin in breast cancer is correlated with lymph node metastasis and poor patient survival. Yang, Y; Hong, Q; Shi, P; Liu, Z; Luo, J; Shao, Z Breast cancer research : BCR
15
R50
2013
Pokaż streszczenie
Syntenin is a scaffolding-PDZ domain-containing protein. Although it is reported that syntenin is associated with melanoma growth and metastasis, the possible role of syntenin in breast cancer has not been well elucidated. The present study investigated the expression and function of syntenin in breast cancer.Real-time polymerase chain reaction (PCR) and Western blots were used to determine the mRNA and protein expression of syntenin. With a combination of overexpression and RNA interference, the effect of syntenin on migration, invasion, and ERK1/2 activation was examined in breast cancer cell lines. The effect of syntenin in vivo was assessed with an orthotropic xenograft tumor model in BALB/c nu/nu mice. In addition, the expression level of syntenin in clinical breast cancer tissues was evaluated with immunohistochemistry. The Kaplan-Meier survival curve was used to evaluate patient survival, and the Cox proportional hazards model was used for multivariate analysis.Our study showed that syntenin expression was upregulated in high-metastasis breast cancer cell lines and breast cancer tissues. Overexpression of syntenin in breast cancer cells promoted cell migration and invasion in vitro. Moreover, overexpression of syntenin promoted breast tumor growth and lung metastasis in vivo. We further showed that activation of integrin β1 and ERK1/2 was required for syntenin-mediated migration and invasion of breast cancer cells. The correlation between syntenin expression and tumor size (P = 0.011), lymph node status (P = 0.001), and recurrence (P = 0.002) was statistically significant. More important, syntenin expression in primary tumors was significantly related to patients' overall survival (OS; P = 0.023) and disease-free survival (DFS; P = 0.001). Its status was an independent prognostic factor of OS (P = 0.049) and DFS (P = 0.002) in our cohort of patients.These results suggest that syntenin plays a significant role in breast cancer progression, and it warrants further investigation as a candidate molecular marker of breast cancer metastasis and a potential therapeutic target. | | | 23786877
 |
Nonmuscle myosin light-chain kinase mediates microglial migration induced by HIV Tat: involvement of β1 integrins. Yao, H; Duan, M; Yang, L; Buch, S FASEB journal : official publication of the Federation of American Societies for Experimental Biology
27
1532-48
2013
Pokaż streszczenie
One of the hallmark features of HIV-associated neurological disease is increased activation and migration of microglia. HIV transactivator of transcription (Tat) is released from infected cells and has the ability to recruit microglia. The purpose of this study was to investigate molecular mechanisms by which recombinant Tat₁₋₇₂, but not heated-inactive Tat₁₋₇₂,induces migration of rat primary microglia. Using primary microglia in Boyden chambers, we demonstrated the role of nonmuscle myosin light-chain kinase (nmMYLK) in Tat₁₋₇₂ (14.4 nM)-mediated increased microglial migration (up to 171.85%). These findings were validated using microglia isolated from wild-type (WT) or nmMYLK(-/-) mice in Dunn chamber assays. Tat₁₋₇₂-mediated activation of nmMYLK resulted in "inside-out" activation of β1 integrin, followed by "outside-in" activation of c-Src, Pyk2, and Cdc42-GTP (using G-LISA in primary and nmMYLK(-/-) microglia) and, subsequently, actin polymerization (flow cytometry and Western blot assays). In vivo corroboration of these findings demonstrated decreased migration of nmMYLK(-/-) microglia (2 × 10(5) cells transplanted into corpus callosum) compared with WT microglia toward microinjected Tat₁₋₇₂ (2 μg/mouse) in hippocampus. Up-regulation of nmMYLK in microglia was also detected in sections of basal ganglia from humans with HIV-encephalitis compared with uninfected controls. nmMYLK is thus critical for eliciting microglial migration during the innate immune response. | | | 23292072
 |
The involvement of integrin β1 signaling in the migration and myofibroblastic differentiation of skin fibroblasts on anisotropic collagen-containing nanofibers. Huang, C; Fu, X; Liu, J; Qi, Y; Li, S; Wang, H Biomaterials
33
1791-800
2011
Pokaż streszczenie
Utilization of nanofibrous matrices for skin wound repair holds great promise due to their morphological and dimensional similarity to native extracellular matrix (ECM). It becomes highly desired to understand how various nanofibrous matrices regulate skin cell behaviors and intracellular signaling pathways, important to tuning the functionality of tissue-engineered skin grafts and affecting the wound healing process. In this study, the phenotypic expressions of normal human dermal fibroblasts (NHDFs) on collagen-containing nanofibrous matrices with either isotropic (i.e., fibers collected randomly with no alignment) or anisotropic (i.e., fibers collected with alignment) fiber organizations were studied by immunostaining, migration assay and molecular analyses. Results showed that both nanofibrous matrices supported the attachment and growth of NHDFs similarly, while showing different cell morphology with distinct variation in focal adhesion formation and distribution. Anisotropic nanofibers significantly triggered the integrin β1 signaling pathway in NHDFs as evidenced by an increase of active integrin β1 (130 kD mature form) and phosphorylation of focal adhesion kinase (FAK) at Tyr-397. Anisotropic matrices also promoted the migration of NHDFs along the fibers, while neutralization of the integrin β1 activity abolished this promotion. Moreover, the fibroblast-to-myofibroblast differentiation was greatly enhanced for the NHDFs cultured on anisotropic nanofibrous matrices over a period of 48 h. Inhibition of cellular integrin β1 activity by neutralizing antibody eliminated this enhancement. These findings suggest the important role of integrin β1 signaling pathway in regulating the nanofiber-induced fibroblast phenotypic alteration and providing insightful understanding of the possible application of collagen-containing nanofibrous matrices for skin regeneration. | Western Blotting | | 22136719
 |
Glia maturation factor gamma regulates the migration and adherence of human T lymphocytes. Lippert, DN; Wilkins, JA BMC immunology
13
21
2011
Pokaż streszczenie
Lymphocyte migration and chemotaxis are essential for effective immune surveillance. A critical aspect of migration is cell polarization and the extension of pseudopodia in the direction of movement. However, our knowledge of the underlying molecular mechanisms responsible for these events is incomplete. Proteomic analysis of the isolated leading edges of CXCL12 stimulated human T cell lines was used to identify glia maturation factor gamma (GMFG) as a component of the pseudopodia. This protein is predominantly expressed in hematopoietic cells and it has been shown to regulate cytoskeletal branching. The present studies were undertaken to examine the role of GMFG in lymphocyte migration.Microscopic analysis of migrating T-cells demonstrated that GMFG was distributed along the axis of movement with enrichment in the leading edge and behind the nucleus of these cells. Inhibition of GMFG expression in T cell lines and IL-2 dependent human peripheral blood T cells with shRNAmir reduced cellular basal and chemokine induced migration responses. The failure of the cells with reduced GMFG to migrate was associated with an apparent inability to detach from the substrates that they were moving on. It was also noted that these cells had an increased adherence to extracellular matrix proteins such as fibronectin. These changes in adherence were associated with altered patterns of β1 integrin expression and increased levels of activated integrins as detected with the activation specific antibody HUTS4. GMFG loss was also shown to increase the expression of the β2 integrin LFA-1 and to increase the adhesion of these cells to ICAM-1.The present studies demonstrate that GMFG is a component of human T cell pseudopodia required for migration. The reduction in migration and increased adherence properties associated with inhibition of GMFG expression suggest that GMFG activity influences the regulation of integrin mediated adhesion. | | | 22510515
 |
Intestinal Epithelial Cells with Impaired Autophagy Lose Their Adhesive Capacity in the Presence of TNF-α. Masaya Saito,Tatsuro Katsuno,Tomoo Nakagawa,Toru Sato,Yoshiko Noguchi,Sayuri Sazuka,Keiko Saito,Makoto Arai,Koutaro Yokote,Osamu Yokosuka Digestive diseases and sciences
57
2011
Pokaż streszczenie
Genome-wide association studies have revealed a link between autophagy-related (ATG) genes and susceptibility to Crohn's disease. This suggests underlying involvement of autophagy impairment in the pathogenesis of Crohn's disease. This study was performed to investigate the pathophysiological importance of autophagy impairment in intestinal epithelial cells exposed to TNF-α. | | | 22466076
 |
Degradation of internalized αvβ5 integrin is controlled by uPAR bound uPA: effect on β1 integrin activity and α-SMA stress fiber assembly. Wang, L; Pedroja, BS; Meyers, EE; Garcia, AL; Twining, SS; Bernstein, AM PloS one
7
e33915
2011
Pokaż streszczenie
Myofibroblasts (Mfs) that persist in a healing wound promote extracellular matrix (ECM) accumulation and excessive tissue contraction. Increased levels of integrin αvβ5 promote the Mf phenotype and other fibrotic markers. Previously we reported that maintaining uPA (urokinase plasminogen activator) bound to its cell-surface receptor, uPAR prevented TGFβ-induced Mf differentiation. We now demonstrate that uPA/uPAR controls integrin β5 protein levels and in turn, the Mf phenotype. When cell-surface uPA was increased, integrin β5 levels were reduced (61%). In contrast, when uPA/uPAR was silenced, integrin β5 total and cell-surface levels were increased (2-4 fold). Integrin β5 accumulation resulted from a significant decrease in β5 ubiquitination leading to a decrease in the degradation rate of internalized β5. uPA-silencing also induced α-SMA stress fiber organization in cells that were seeded on collagen, increased cell area (1.7 fold), and increased integrin β1 binding to the collagen matrix, with reduced activation of β1. Elevated cell-surface integrin β5 was necessary for these changes after uPA-silencing since blocking αvβ5 function reversed these effects. Our data support a novel mechanism by which downregulation of uPA/uPAR results in increased integrin αvβ5 cell-surface protein levels that regulate the activity of β1 integrins, promoting characteristics of the persistent Mf. | | | 22470492
 |
In vivo cleaved CDCP1 promotes early tumor dissemination via complexing with activated β1 integrin and induction of FAK/PI3K/Akt motility signaling. Casar, B, et al. Oncogene, (2012)
2011
Pokaż streszczenie
Specific cleavage of the transmembrane molecule, CUB domain-containing protein-1 (CDCP1), by plasmin-like serine proteases induces outside-in signal transduction that facilitates early stages of spontaneous metastasis leading to tumor cell intravasation, namely cell escape from the primary tumor, stromal invasion and transendothelial migration. We identified active β1 integrin as a biochemical and functional partner of the membrane-retained 70-kDa CDCP1 fragment, newly generated from its full-length 135-kDa precursor though proteolytic cleavage by serine proteases. Both in cell cultures and in live animals, active β1 integrin complexed preferentially with functionally activated, phosphorylated 70-kDa CDCP1. Complexing of β1 integrin the 70-kDa with CDCP1 fragment induced intracellular phosphorylation signaling, involving focal adhesion kinase-1 (FAK) and PI3 kinase (PI3K)-dependent Akt activation. Thus, inhibition of FAK/PI3K activities by specific inhibitors as well as short-hairpin RNA downregulation of β1 integrin significantly reduced FAK/Akt phosphorylation under conditions where CDCP1 was processed by serine proteases, indicating that FAK/PI3K/Akt pathway operates downstream of cleaved CDCP1 complexed with β1 integrin. Furthermore, this complex-dependent signaling correlated positively with high levels of tumor cell intravasation and dissemination. Correspondingly, abrogation in vivo of CDCP1 cleavage either by unique cleavage-blocking monoclonal antibody 10-D7 or by inhibition of proteolytic activity of plasmin-like serine proteases with aprotinin prevented β1 integrin/CDCP1 complexing and downstream FAK/Akt signaling concomitant with significant reduction of stromal invasion and spontaneous metastasis. Therefore, β1 integrin appears to serve as a motility-regulating partner mediating cross-talk between proteolytically cleaved, membrane-retained CDCP1 and members of FAK/PI3K/Akt pathway. This CDCP1 cleavage-induced signaling cascade constitutes a unique mechanism, independent of extracellular matrix remodeling, whereby a proteolytically cleaved CDCP1 regulates in vivo locomotion and metastasis of tumor cells through β1 integrin partnering. Our findings indicate that CDCP1 cleavage, occurring at the apex of a β1 integrin/FAK/PI3K/Akt signaling cascade, may represent a therapeutic target for CDCP1-positive cancers.Oncogene advance online publication, 3 December 2012; doi:10.1038/onc.2012.547. | Immunoprecipitation | | 23208492
 |
Perisynaptic chondroitin sulfate proteoglycans restrict structural plasticity in an integrin-dependent manner. Orlando, C; Ster, J; Gerber, U; Fawcett, JW; Raineteau, O The Journal of neuroscience : the official journal of the Society for Neuroscience
32
18009-17, 18017a
2011
Pokaż streszczenie
During early postnatal development of the CNS, neuronal networks are configured through the formation, elimination, and remodeling of dendritic spines, the sites of most excitatory synaptic connections. The closure of this critical period for plasticity correlates with the maturation of the extracellular matrix (ECM) and results in reduced dendritic spine dynamics. Chondroitin sulfate proteoglycans (CSPGs) are thought to be the active components of the mature ECM that inhibit functional plasticity in the adult CNS. These molecules are diffusely expressed in the extracellular space or aggregated as perineuronal nets around specific classes of neurons. We used organotypic hippocampal slices prepared from 6-d-old Thy1-YFP mice and maintained in culture for 4 weeks to allow ECM maturation. We performed live imaging of CA1 pyramidal cells to assess the effect of chondroitinase ABC (ChABC)-mediated digestion of CSPGs on dendritic spine dynamics. We found that CSPG digestion enhanced the motility of dendritic spines and induced the appearance of spine head protrusions in a glutamate receptor-independent manner. These changes were paralleled by the activation of β1-integrins and phosphorylation of focal adhesion kinase at synaptic sites, and were prevented by preincubation with a β1-integrin blocking antibody. Interestingly, microinjection of ChABC close to dendritic segments was sufficient to induce spine remodeling, demonstrating that CSPGs located around dendritic spines modulate their dynamics independently of perineuronal nets. This restrictive action of perisynaptic CSPGs in mature neural tissue may account for the therapeutic effects of ChABC in promoting functional recovery in impaired neural circuits. | | | 23238717
 |