Enhancing the effectiveness of androgen deprivation in prostate cancer by inducing Filamin A nuclear localization. Mooso, Benjamin A, et al. Endocr. Relat. Cancer, 19: 759-77 (2012)
2011
Pokaż streszczenie
As prostate cancer (CaP) is regulated by androgen receptor (AR) activity, metastatic CaP is treated with androgen deprivation therapy (ADT). Despite initial response, patients on ADT eventually progress to castration-resistant CaP (CRPC), which is currently incurable. We previously showed that cleavage of the 280 kDa structural protein Filamin A (FlnA) to a 90 kDa fragment, and nuclear localization of the cleaved product, sensitized CRPC cells to ADT. Hence, treatment promoting FlnA nuclear localization would enhance androgen responsiveness. Here, we show that FlnA nuclear localization induced apoptosis in CRPC cells during ADT, identifying it as a treatment tool in advanced CaP. Significantly, the natural product genistein combined polysaccharide (GCP) had a similar effect. Investigation of the mechanism of GCP-induced apoptosis showed that GCP induced FlnA cleavage and nuclear localization and that apoptosis resulting from GCP treatment was mediated by FlnA nuclear localization. Two main components of GCP are genistein and daidzein: the ability of GCP to induce G2 arrest was due to genistein whereas sensitivity to ADT stemmed from daidzein; hence, both were needed to mediate GCP's effects. FlnA cleavage is regulated by its phosphorylation; we show that ADT enhanced FlnA phosphorylation, which prevented its cleavage, whereas GCP inhibited FlnA phosphorylation, thereby sensitizing CaP cells to ADT. In a mouse model of CaP recurrence, GCP, but not vehicle, impeded relapse following castration, indicating that GCP, when administered with ADT, interrupted the development of CRPC. These results demonstrate the efficacy of GCP in promoting FlnA nuclear localization and enhancing androgen responsiveness in CaP. | 22993077
|
Terminal osseous dysplasia is caused by a single recurrent mutation in the FLNA gene. Sun, Y; Almomani, R; Aten, E; Celli, J; van der Heijden, J; Venselaar, H; Robertson, SP; Baroncini, A; Franco, B; Basel-Vanagaite, L; Horii, E; Drut, R; Ariyurek, Y; den Dunnen, JT; Breuning, MH American journal of human genetics
87
146-53
2009
Pokaż streszczenie
Terminal osseous dysplasia (TOD) is an X-linked dominant male-lethal disease characterized by skeletal dysplasia of the limbs, pigmentary defects of the skin, and recurrent digital fibroma with onset in female infancy. After performing X-exome capture and sequencing, we identified a mutation at the last nucleotide of exon 31 of the FLNA gene as the most likely cause of the disease. The variant c.5217Ggreater than A was found in six unrelated cases (three families and three sporadic cases) and was not found in 400 control X chromosomes, pilot data from the 1000 Genomes Project, or the FLNA gene variant database. In the families, the variant segregated with the disease, and it was transmitted four times from a mildly affected mother to a more seriously affected daughter. We show that, because of nonrandom X chromosome inactivation, the mutant allele was not expressed in patient fibroblasts. RNA expression of the mutant allele was detected only in cultured fibroma cells obtained from 15-year-old surgically removed material. The variant activates a cryptic splice site, removing the last 48 nucleotides from exon 31. At the protein level, this results in a loss of 16 amino acids (p.Val1724_Thr1739del), predicted to remove a sequence at the surface of filamin repeat 15. Our data show that TOD is caused by this single recurrent mutation in the FLNA gene. | 20598277
|
Filamin associates with stress signalling kinases MKK7 and MKK4 and regulates JNK activation. Kentaro Nakagawa,Misato Sugahara,Tokiwa Yamasaki,Hiroaki Kajiho,Shinya Takahashi,Jun Hirayama,Yasuhiro Minami,Yasutaka Ohta,Toshio Watanabe,Yutaka Hata,Toshiaki Katada,Hiroshi Nishina The Biochemical journal
427
2009
Pokaż streszczenie
SAPK/JNK (stress-activated protein kinase/c-Jun N-terminal kinase) belongs to the MAPK (mitogen-activated protein kinase) family and is important in many biological contexts. JNK activation is regulated by phosphorylation of specific tyrosine and threonine residues sequentially catalysed by MKK4 and MKK7, which are both dual-specificity MAPKKs (MAPK kinases). Previously, we reported that tyrosine-phosphorylation of JNK by MKK4 precedes threonine-phosphorylation by MKK7, and that both are required for synergistic JNK activation. In the present study, we identify the actin-binding protein-280 (Filamin A) as a presumed 'binder' protein that can bind to MKK7, as well as to MKK4, connecting them in close proximity. We show that Filamin family members A, B and C interact with MKK4 and MKK7, but not with JNK. Filamin A binds to an N-terminal region (residues 31-60) present in the MKK7gamma and MKK7beta splice isoforms, but cannot bind to MKK7alpha which lacks these amino acids. This same N-terminal region is crucial for the intracellular co-localization of MKK7gamma with actin stress fibres and Filamin A. Experiments using Filamin-A-deletion mutants revealed that the MKK7-binding region of Filamin A differs from its MKK4-binding region, and that MKK7gamma (but not MKK7alpha) can form a complex with Filamin A and MKK4. Finally, we used Filamin-A-deficient cells to show that Filamin A enhances MKK7 activation and is important for synergistic stress-induced JNK activation in vivo. Thus Filamin A is a novel member of the group of scaffold proteins whose function is to link two MAPKKs together and promote JNK activation. | 20156194
|
Nuclear versus cytoplasmic localization of filamin A in prostate cancer: immunohistochemical correlation with metastases. Bedolla, RG; Wang, Y; Asuncion, A; Chamie, K; Siddiqui, S; Mudryj, MM; Prihoda, TJ; Siddiqui, J; Chinnaiyan, AM; Mehra, R; de Vere White, RW; Ghosh, PM Clinical cancer research : an official journal of the American Association for Cancer Research
15
788-96
2009
Pokaż streszczenie
We previously showed that nuclear localization of the actin-binding protein, filamin A (FlnA), corresponded to hormone-dependence in prostate cancer. Intact FlnA (280 kDa, cytoplasmic) cleaved to a 90 kDa fragment which translocated to the nucleus in hormone-naïve cells, whereas in hormone-refractory cells, FlnA was phosphorylated, preventing its cleavage and nuclear translocation. We have examined whether FlnA localization determines a propensity to metastasis in advanced androgen-independent prostate cancer.We examined, by immunohistochemistry, FlnA localization in paraffin-embedded human prostate tissue representing different stages of progression. Results were correlated with in vitro studies in a cell model of prostate cancer.Nuclear FlnA was significantly higher in benign prostate (0.6612 +/- 0.5888), prostatic intraepithelial neoplasia (PIN; 0.6024 +/- 0.4620), and clinically localized cancers (0.69134 +/- 0.5686) compared with metastatic prostate cancers (0.3719 +/- 0.4992, P = 0.0007). Cytoplasmic FlnA increased from benign prostate (0.0833 +/- 0.2677), PIN (0.1409 +/- 0.2293), localized cancers (0.3008 +/- 0.3762, P = 0.0150), to metastases (0.7632 +/- 0.4414, P less than 0.00001). Logistic regression of metastatic versus nonmetastatic tissue yielded the area under the receiver operating curve as 0.67 for nuclear-FlnA, 0.79 for cytoplasmic-FlnA, and 0.82 for both, indicating that metastasis correlates with cytoplasmic to nuclear translocation. In vitro studies showed that cytoplasmic localization of FlnA induced cell invasion whereas nuclear translocation of the protein inhibited it. FlnA dephosphorylation with the protein kinase A inhibitor H-89 facilitated FlnA nuclear translocation, resulting in decreased invasiveness and AR transcriptional activity, and induced sensitivity to androgen withdrawal in hormone-refractory cells.The data presented in this study indicate that in prostate cancer, metastasis correlates with cytoplasmic localization of FlnA and may be prevented by cleavage and subsequent nuclear translocation of this protein. Pełny tekst artykułu | 19188148
|
Enhanced interferon signaling pathway in oral cancer revealed by quantitative proteome analysis of microdissected specimens using 16O/18O labeling and integrated two-dimensional LC-ESI-MALDI tandem MS. Chi, LM; Lee, CW; Chang, KP; Hao, SP; Lee, HM; Liang, Y; Hsueh, C; Yu, CJ; Lee, IN; Chang, YJ; Lee, SY; Yeh, YM; Chang, YS; Chien, KY; Yu, JS Molecular & cellular proteomics : MCP
8
1453-74
2009
Pokaż streszczenie
Oral squamous cell carcinoma (OSCC) remains one of the most common cancers worldwide, and the mortality rate of this disease has increased in recent years. No molecular markers are available to assist with the early detection and therapeutic evaluation of OSCC; thus, identification of differentially expressed proteins may assist with the detection of potential disease markers and shed light on the molecular mechanisms of OSCC pathogenesis. We performed a multidimensional (16)O/(18)O proteomics analysis using an integrated ESI-ion trap and MALDI-TOF/TOF MS system and a computational data analysis pipeline to identify proteins that are differentially expressed in microdissected OSCC tumor cells relative to adjacent non-tumor epithelia. We identified 1233 unique proteins in microdissected oral squamous epithelia obtained from three pairs of OSCC specimens with a false discovery rate of less than 3%. Among these, 977 proteins were quantified between tumor and non-tumor cells. Our data revealed 80 dysregulated proteins (53 up-regulated and 27 down-regulated) when a 2.5-fold change was used as the threshold. Immunohistochemical staining and Western blot analyses were performed to confirm the overexpression of 12 up-regulated proteins in OSCC tissues. When the biological roles of 80 differentially expressed proteins were assessed via MetaCore analysis, the interferon (IFN) signaling pathway emerged as one of the most significantly altered pathways in OSCC. As many as 20% (10 of 53) of the up-regulated proteins belonged to the IFN-stimulated gene (ISG) family, including ubiquitin cross-reactive protein (UCRP)/ISG15. Using head-and-neck cancer tissue microarrays, we determined that UCRP is overexpressed in the majority of cheek and tongue cancers and in several cases of larynx cancer. In addition, we found that IFN-beta stimulates UCRP expression in oral cancer cells and enhances their motility in vitro. Our findings shed new light on OSCC pathogenesis and provide a basis for the future development of novel biomarkers. | 19297561
|
Filamin A stabilizes Fc gamma RI surface expression and prevents its lysosomal routing. Jeffrey M Beekman,Cees E van der Poel,Joke A van der Linden,Debbie L C van den Berg,Peter V E van den Berghe,Jan G J van de Winkel,Jeanette H W Leusen Journal of immunology (Baltimore, Md. : 1950)
180
2008
Pokaż streszczenie
Filamin A, or actin-binding protein 280, is a ubiquitously expressed cytosolic protein that interacts with intracellular domains of multiple receptors to control their subcellular distribution, and signaling capacity. In this study, we document interaction between FcgammaRI, a high-affinity IgG receptor, and filamin A by yeast two-hybrid techniques and coimmunoprecipitation. Both proteins colocalized at the plasma membrane in monocytes, but dissociated upon FcgammaRI triggering. The filamin-deficient cell line M2 and a filamin-reconstituted M2 subclone (A7), were used to further study FcgammaRI-filamin interactions. FcgammaRI transfection in A7 cells with filamin resulted in high plasma membrane expression levels. In filamin-deficient M2 cells and in filamin RNA-interference studies, FcgammaRI surface expression was consistently reduced. FcgammaRI localized to LAMP-1-positive vesicles in the absence of filamin as shown by confocal microscopy indicative for lysosomal localization. Mouse IgG2a capture experiments suggested a transient membrane expression of FcgammaRI before being transported to the lysosomes. These data support a pivotal role for filamin in FcgammaRI surface expression via retention of FcgammaRI from a default lysosomal pathway. | 18322202
|
Clinical and morphological phenotype of the filamin myopathy: a study of 31 German patients. Kley, RA; Hellenbroich, Y; van der Ven, PF; Fürst, DO; Huebner, A; Bruchertseifer, V; Peters, SA; Heyer, CM; Kirschner, J; Schröder, R; Fischer, D; Müller, K; Tolksdorf, K; Eger, K; Germing, A; Brodherr, T; Reum, C; Walter, MC; Lochmüller, H; Ketelsen, UP; Vorgerd, M Brain : a journal of neurology
130
3250-64
2007
Pokaż streszczenie
Mutations in the filamin C gene (FLNC) cause a myofibrillar myopathy (MFM), morphologically characterized by focal myofibrillar destruction and abnormal accumulation of several proteins within skeletal muscle fibres. We studied 31 patients from four German families to evaluate the phenotype of filaminopathy. All patients harboured the same p.W2710X mutation in FLNC. Haplotype analysis suggested a founder mutation in these German filaminopathy families. The mean age at onset of clinical symptoms was 44 +/- 6 years (range, 24-57 years). Slowly progressive muscle weakness was mostly pronounced proximally, initially affecting the lower extremities and involving the upper extremities in the course of disease progression, similar to the distribution of weakness seen in limb-girdle muscular dystrophies (LGMD). Patients frequently developed respiratory muscle weakness. About one-third of the patients showed cardiac abnormalities comprising conduction blocks, tachycardia, diastolic dysfunction and left ventricular hypertrophy indicating a cardiac involvement in filaminopathy. Serum creatine kinase levels varied from normal up to 10-fold of the upper limit. Magnetic resonance imaging studies showed a rather homogenous pattern of muscle involvement in the lower extremities differing from that in other types of MFM. Myopathological features included perturbation of myofibrillar alignment, accumulation of granulofilamentous material similar to that seen in primary desminopathies and abnormal intracellular protein deposits typical of MFM. Decreased activities of oxidative enzymes and fibre hypertrophy seem to be early features, whereas dystrophic changes were present in advanced stages of filaminopathy. Rimmed vacuoles were detected in only a few cases. The intracellular aggregates were composed of a variety of proteins including filamin C, desmin, myotilin, Xin, dystrophin and sarcoglycans. Therapy is so far limited to symptomatic treatment. The German filaminopathy cohort, the largest group of patients studied so far, shares phenotypic features with LGMD and presents with characteristic histopathological findings of MFM. | 18055494
|
Expression of ral GTPases, their effectors, and activators in human bladder cancer. Smith, SC; Oxford, G; Baras, AS; Owens, C; Havaleshko, D; Brautigan, DL; Safo, MK; Theodorescu, D Clinical cancer research : an official journal of the American Association for Cancer Research
13
3803-13
2007
Pokaż streszczenie
The Ral family of small G proteins has been implicated in tumorigenesis, invasion, and metastasis in in vitro and animal model systems; however, a systematic evaluation of the state of activation, mutation, or expression of these GTPases has not been reported in any tumor type.We determined the activation state of the RalA and RalB paralogs in 10 bladder cancer cell lines with varying Ras mutation status. We sequenced RalA and RalB cDNAs from 20 bladder cancer cell lines and functionally evaluated the mutations found. We determined the expression of Ral, Ral activators, and Ral effectors on the level of mRNA or protein in human bladder cancer cell lines and tissues.We uncovered one E97Q substitution mutation of RalA in 1 of 20 cell lines tested and higher Ral activation in cells harboring mutant HRAS. We found overexpression of mRNAs for RalA and Aurora-A, a mitotic kinase that activates RalA, in bladder cancer (both P less than 0.001), and in association with tumors of higher stage and grade. RalBP1, a canonical Ral effector, mRNA and protein was overexpressed in bladder cancer (P less than 0.001), whereas Filamin A was underexpressed (P = 0.004). We determined that RalA mRNA levels correlated significantly with protein levels (P less than 0.001) and found protein overexpression of both GTPases in homogenized invasive cancers. Available data sets suggest that RalA mRNA is also overexpressed in seminoma, glioblastoma, and carcinomas of the liver, pancreas, and prostate.These findings of activation and differential expression of RalA and RalB anchor prior work in model systems to human disease and suggest therapeutic strategies targeting both GTPases in this pathway may be beneficial. | 17606711
|
A 90 kDa fragment of filamin A promotes Casodex-induced growth inhibition in Casodex-resistant androgen receptor positive C4-2 prostate cancer cells. Wang, Y; Kreisberg, JI; Bedolla, RG; Mikhailova, M; deVere White, RW; Ghosh, PM Oncogene
26
6061-70
2007
Pokaż streszczenie
Prostate tumors are initially dependent on androgens for growth, but the majority of patients treated with anti-androgen therapy progress to androgen-independence characterized by resistance to such treatment. This study investigates a novel role for filamin A (FlnA), a 280 kDa cytoskeletal protein (consisting of an actin-binding domain (ABD) followed by 24 sequential repeats), in androgen-independent (AI) growth. Full-length FlnA is cleaved to 170 kDa (ABD+FlnA1-15) and 110 kDa fragments (FlnA16-24); the latter is further cleaved to a 90 kDa fragment (repeats 16-23) capable of nuclear translocation and androgen receptor (AR) binding. Here, we demonstrate that in androgen-dependent LNCaP prostate cancer cells, the cleaved 90 kDa fragment is localized to the nucleus, whereas in its AI subline C4-2, FlnA failed to cleave and remained cytoplasmic. Transfection of FlnA16-24 cDNA in C4-2 cells restored expression and nuclear localization of 90 kDa FlnA. Unlike LNCaP, C4-2 cells proliferate in androgen-reduced medium and in the presence of the AR-antagonist Casodex. They also exhibit increased Akt phosphorylation compared to LNCaP, which may contribute to their AI phenotype. Nuclear expression of 90 kDa FlnA in C4-2 cells decreased Akt phosphorylation, prevented proliferation in androgen-reduced medium and restored Casodex sensitivity. This effect was inhibited by constitutive activation of Akt indicating that FlnA restored Casodex sensitivity in C4-2 cells by decreasing Akt phosphorylation. In addition, FlnA-specific siRNA which depleted FlnA levels, but not control siRNA, induced resistance to Casodex in LNCaP cells. Our results demonstrate that expression of nuclear FlnA is necessary for androgen dependence in these cells. | 17420725
|
Identification of candidate prostate cancer biomarkers in prostate needle biopsy specimens using proteomic analysis. Jian-Feng Lin,Jun Xu,Hong-Yu Tian,Xia Gao,Qing-Xi Chen,Qi Gu,Gen-Jun Xu,Jian-da Song,Fu-Kun Zhao International journal of cancer. Journal international du cancer
121
2007
Pokaż streszczenie
Although serum prostate specific antigen (PSA) is a well-established diagnostic tool for prostate cancer (PCa) detection, the definitive diagnosis of PCa is based on the information contained in prostate needle biopsy (PNBX) specimens. To define the proteomic features of PNBX specimens to identify candidate biomarkers for PCa, PNBX specimens from patients with PCa or benign prostatic hyperplasia (BPH) were subjected to comparative proteomic analysis. 2-DE revealed that 52 protein spots exhibited statistically significantly changes among PCa and BPH groups. Interesting spots were identified by MALDI-TOF-MS/MS. The 2 most notable groups of proteins identified included latent androgen receptor coregulators [FLNA(7-15) and FKBP4] and enzymes involved in mitochondrial fatty acid beta-oxidation (DCI and ECHS1). An imbalance in the expression of peroxiredoxin subtypes was noted in PCa specimens. Furthermore, different post-translationally modified isoforms of HSP27 and HSP70.1 were identified. Importantly, changes in FLNA(7-15), FKBP4, and PRDX4 expression were confirmed by immunoblot analyses. Our results suggest that a proteomics-based approach is useful for developing a more complete picture of the protein profile of PNBX specimen. The proteins identified by this approach may be useful molecular targets for PCa diagnostics and therapeutics. | 17722004
|