Three-dimensional epithelial and mesenchymal cell co-cultures form early tooth epithelium invagination-like structures: expression patterns of relevant molecules. Li Xiao,Takeki Tsutsui Journal of cellular biochemistry
113
2011
Pokaż streszczenie
Epithelium invagination is the key feature of early tooth development. In this study, we built a three-dimensional (3D) model to represent epithelium invagination-like structure by tissue engineering. Human normal oral epithelial cells (OECs) and dental pulp stem cells (DPSCs) were co-cultivated for 2-7 weeks on matrigel or collagen gel to form epithelial and mesenchymal tissues. The histological change and gene expression were analyzed by HE staining, immunostaining, and quantitative real-time RT-PCR (qRT-PCR). After 4 weeks of cultivation, OECs-formed epithelium invaginated into DPSCs-derived mesenchyme on both matrigel and collagen gel. OEC-DPSC co-cultures on matrigel showed typical invagination of epithelial cells and condensation of the underlying mesenchymal cells. Epithelial invagination-related molecules, CD44 and E-cadherin, and mesenchymal condensation involved molecules, N-cadherin and Msx1 expressed at a high level in the tissue model, suggesting the epithelial invagination is functional. However, when OECs and DPSCs were co-cultivated on collagen gel; the invaginated epithelium was transformed to several epithelial colonies inside the mesenchyme after long culture period. When DPSCs were co-cultivated with immortalized human OECs NDUSD-1, all of the above-mentioned features were not presented. Immunohistological staining and qRT-PCR analysis showed that p75, BMP2, Shh, Wnt10b, E-cadherin, N-cadherin, Msx1, and Pax9 are involved in initiating epithelium invagination and epithelial-mesenchymal interaction in the 3D OEC-DPSC co-cultures. Our results suggest that co-cultivated OECs and DPSCs on matrigel under certain conditions can build an epithelium invagination-like model. This model might be explored as a potential research tool for epithelial-mesenchymal interaction and tooth regeneration. | 22234822
|
Oral administration of recombinant adeno-associated virus-mediated bone morphogenetic protein-7 suppresses CCl(4)-induced hepatic fibrosis in mice. Hao, ZM; Cai, M; Lv, YF; Huang, YH; Li, HH Molecular therapy : the journal of the American Society of Gene Therapy
20
2043-51
2011
Pokaż streszczenie
Fibrogenesis and hepatocyte degeneration are the main pathological processes in chronic liver diseases. Transforming growth factor-β1 (TGF-β1) is the key profibrotic cytokine in hepatic fibrosis. Bone morphogenetic protein-7 (BMP-7) is a potent antagonist of TGF-β1 and an antifibrotic factor. In this study, we generated a recombinant adeno-associated virus carrying BMP-7 (AAV-BMP-7) and tested its ability to suppress carbon tetrachloride (CCl(4))-induced hepatic fibrosis when orally administered to mice. Our results show that the ectopic expression of BMP-7 in gastrointestinal (GI) mucosa due to the AAV-BMP-7 administration led to the long-term elevation of serum BMP-7 concentrations and resulted in the drastic amelioration of CCl(4)-induced hepatic fibrosis in BALB/c mice. Immunostaining for α-smooth muscle actin (α-SMA) and desmin demonstrated that AAV-BMP-7 inhibited the activation of hepatic stellate cells (HSCs) in the fibrotic mouse liver. Moreover, the ectopic expression of BMP-7 promoted hepatocyte proliferation, as confirmed by an increase in the amount of proliferating cell nuclear antigen (PCNA)-positive hepatocytes in the mice that received AAV-BMP-7. Our results clearly indicate that BMP-7 is capable of inhibiting hepatic fibrosis and promoting hepatocyte regeneration. We suggest that oral AAV-BMP-7 could be developed into a safe, simple, and effective therapy for hepatic fibrosis. | 22850680
|