Millipore Sigma Vibrant Logo
 

protein+detection


468 Results Advanced Search  
Showing

Narrow Your Results Use the filters below to refine your search

Document Type

  • (235)
  • (1)
  • (1)
  • (1)
  • (1)
Can't Find What You're Looking For?
Contact Customer Service

 
  • A protein profile study to discriminate CIN lesions from normal cervical epithelium. 21573931

    Cervical intraepithelial neoplasia (CIN), a frequently encountered disease caused by Human Papilloma Virus (HPV) is often diagnosed in formaldehyde-fixed paraffin embedded (FFPE) punch biopsies. Since it is known that this procedure strongly affects the water-soluble proteins contained in the cervical tissue we decided to investigate whether a water-soluble protein-saving biopsy processing method can be used to support the diagnosis of normal and CIN.Cervical punch biopsies from 55 women were incubated for 24 h at 4°C in RPMI1640 medium for protein analysis prior to usual FFPE processing and p16 and Ki67-supported histologic consensus diagnosis was assessed. The biopsy supernatants were subjected to surface-enhanced laser desorption-ionization time of flight mass spectrometry (SELDI-TOF MS) for identifying differentially expressed proteins. Binary logistic regression and classification and regression trees (CART) were used to develop a classification model.The age of the patients ranged from 26 to 40 years (median 29.7). The consensus diagnoses were normal cervical tissue (n = 10) and CIN2-3 (n = 45). The mean protein concentration was 1.00 and 1.09 mg/ml in the normal and CIN2-3 group, respectively. The peak detection and clustering process resulted in 40 protein peaks. Many of these peaks differed between the two groups, but only three had independent discriminating power. The overall classification results were 88%.Water-soluble proteins sampled from punch biopsies are promising to assist the diagnosis of normal and CIN2-3.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Human protein arginine methyltransferases in vivo--distinct properties of eight canonical members of the PRMT family. 19208762

    Methylation of arginine residues is a widespread post-translational modification of proteins catalyzed by a small family of protein arginine methyltransferases (PRMTs). Functionally, the modification appears to regulate protein functions and interactions that affect gene regulation, signalling and subcellular localization of proteins and nucleic acids. All members have been, to different degrees, characterized individually and their implication in cellular processes has been inferred from characterizing substrates and interactions. Here, we report the first comprehensive comparison of all eight canonical members of the human PRMT family with respect to subcellular localization and dynamics in living cells. We show that the individual family members differ significantly in their properties, as well as in their substrate specificities, suggesting that they fulfil distinctive, non-redundant functions in vivo. In addition, certain PRMTs display different subcellular localization in different cell types, implicating cell- and tissue-specific mechanisms for regulating PRMT functions.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Total protein analysis as a reliable loading control for quantitative fluorescent Western blotting. 24023619

    Western blotting has been a key technique for determining the relative expression of proteins within complex biological samples since the first publications in 1979. Recent developments in sensitive fluorescent labels, with truly quantifiable linear ranges and greater limits of detection, have allowed biologists to probe tissue specific pathways and processes with higher resolution than ever before. However, the application of quantitative Western blotting (QWB) to a range of healthy tissues and those from degenerative models has highlighted a problem with significant consequences for quantitative protein analysis: how can researchers conduct comparative expression analyses when many of the commonly used reference proteins (e.g. loading controls) are differentially expressed? Here we demonstrate that common controls, including actin and tubulin, are differentially expressed in tissues from a wide range of animal models of neurodegeneration. We highlight the prevalence of such alterations through examination of published "-omics" data, and demonstrate similar responses in sensitive QWB experiments. For example, QWB analysis of spinal cord from a murine model of Spinal Muscular Atrophy using an Odyssey scanner revealed that beta-actin expression was decreased by 19.3±2% compared to healthy littermate controls. Thus, normalising QWB data to β-actin in these circumstances could result in 'skewing' of all data by ∼20%. We further demonstrate that differential expression of commonly used loading controls was not restricted to the nervous system, but was also detectable across multiple tissues, including bone, fat and internal organs. Moreover, expression of these "control" proteins was not consistent between different portions of the same tissue, highlighting the importance of careful and consistent tissue sampling for QWB experiments. Finally, having illustrated the problem of selecting appropriate single protein loading controls, we demonstrate that normalisation using total protein analysis on samples run in parallel with stains such as Coomassie blue provides a more robust approach.
    Document Type:
    Reference
    Product Catalog Number:
    AB9568
    Product Catalog Name:
    Anti-Neurofilament L Antibody
  • Protein kinase Cepsilon inhibits UVR-induced expression of FADD, an adaptor protein, linked to both Fas- and TNFR1-mediated apoptosis. 19194472

    Protein kinase C (PKC)epsilon overexpression in FVB/N transgenic mice sensitized skin to UVR-induced development of squamous cell carcinomas and suppressed formation of sunburn cells, which are DNA-damaged keratinocytes undergoing apoptosis. Here, we elucidated the mechanisms associated with the inhibition of UVR-induced appearance of sunburn cells in PKCepsilon transgenic mice. We found that the inhibition of UVR-induced sunburn cell formation in PKCepsilon transgenic mice may be the result of the inhibition of the expression of Fas, Fas ligand, and the mammalian death adaptor protein termed Fas-associated with death domain (FADD). The adaptor protein FADD is the key component of the death-inducing signaling complex of both Fas and tumor necrosis factor receptor 1. A decreased expression of epidermal FADD was observed after a single UVR exposure. However, a complete loss of FADD expression was found after four (Monday, Wednesday, Friday, and Monday) repeated UVR exposures. FADD transmits apoptotic signals from death receptors to the downstream initiator caspase-8 and connects to the mitochondrial intrinsic apoptotic signal transduction pathway by the cleavage of Bid, a Bcl-2 family member. PKCepsilon-mediated loss of FADD expression inhibited UVR signals to the activation of both extrinsic and intrinsic apoptotic pathways.
    Document Type:
    Reference
    Product Catalog Number:
    S7111
    Product Catalog Name:
    ApopTag® Plus In Situ Apoptosis Fluorescein Detection Kit
  • Protein misfolding detected early in pathogenesis of transgenic mouse model of Huntington disease using amyloid seeding assay. 22187438

    Huntington disease (HD) is one of several fatal neurodegenerative disorders associated with misfolded proteins. Here, we report a novel method for the sensitive detection of misfolded huntingtin (HTT) isolated from the brains of transgenic (Tg) mouse models of HD and humans with HD using an amyloid seeding assay (ASA), which is based on the propensity of misfolded proteins to act as a seed and shorten the nucleation-associated lag phase in the kinetics of amyloid formation in vitro. Using synthetic polyglutamine peptides as the substrate for amyloid formation, we found that partially purified misfolded HTT obtained from end-stage brain tissue of two Tg HD mouse models and brain tissue of post-mortem human HD patients was capable of specifically accelerating polyglutamine amyloid formation compared with unseeded reactions and controls. Alzheimer and prion disease brain tissues did not do so, demonstrating the specificity of the ASA. It is unclear whether early intermediates or later conformational species in the protein misfolding process act as seeds in the ASA for HD. However, we were able to detect misfolded protein in the brains of YAC128 mice early in disease pathogenesis (11 weeks of age), whereas large inclusion bodies have not been observed in the brains of these mice by histology until 78 weeks of age, much later in the pathogenic process. The sensitive detection of misfolded HTT protein early in the disease pathogenesis in the YAC128 Tg mouse model strengthens the argument for a causative role of protein misfolding in HD.
    Document Type:
    Reference
    Product Catalog Number:
    MAB1574
    Product Catalog Name:
    Anti-Polyglutamine-Expansion Diseases Marker Antibody, clone 5TF1-1C2
  • CCAAT-enhancer-binding protein β (C/EBPβ) and downstream human placental growth hormone genes are targets for dysregulation in pregnancies complicated by maternal obesity ... 23782703

    Human chorionic somatomammotropin (CS) and placental growth hormone variant (GH-V) act as metabolic adaptors in response to maternal insulin resistance, which occurs in "normal" pregnancy. Maternal obesity can exacerbate this "resistance," suggesting that CS, GH-V, or transcription factors that regulate their production might be targets. The human CS genes, hCS-A and hCS-B, flank the GH-V gene. A significant decrease in pre-term placental CS/GH-V RNA levels was observed in transgenic mice containing the CS/GH-V genes in a model of high fat diet (HFD)-induced maternal obesity. Similarly, a decrease in CS/GH-V RNA levels was detected in term placentas from obese (body mass index (BMI) ≥ 35 kg/m(2)) versus lean (BMI 20-25 kg/m(2)) women. A specific decrease in transcription factor CCAAT-enhancer-binding protein β (C/EBPβ) RNA levels was also seen with obesity; C/EBPβ is required for mouse placenta development and is expressed, like CS and GH-V, in syncytiotrophoblasts. Binding of C/EBPβ to the CS gene downstream enhancer regions, which by virtue of their position distally flank the GH-V gene, was reduced in placenta chromatin from mice on a HFD and in obese women; a corresponding decrease in RNA polymerase II associated with CS/GH-V promoters was also observed. Detection of decreased endogenous CS/GH-V RNA levels in human placental tumor cells treated with C/EBPβ siRNA is consistent with a direct effect. These data provide evidence for CS/GH-V dysregulation in acute HFD-induced obesity in mouse pregnancy and chronic obesity in human pregnancy and implicate C/EBPβ, a factor associated with CS regulation and placental development.
    Document Type:
    Reference
    Product Catalog Number:
    04-1153
  • Utility of surfactant protein B precursor and thyroid transcription factor 1 in differentiating adenocarcinoma of the lung from malignant mesothelioma. 10374779

    Differentiation of malignant mesothelioma from adenocarcinoma, particularly from a lung primary, remains a difficult diagnostic problem. Surfactant protein B precursor (pro-SP-B) and thyroid transcription factor 1 (ITF-1) are expressed selectively in the normal respiratory epithelium and in adenocarcinomas of the lung. In this study, we evaluated the utility of pro-SP-B and ITF-1 in distinguishing pulmonary adenocarcinomas and malignant mesotheliomas. Immunoreactivity for pro-SP-B and TTF-1 was examined in paraffin sections of 370 primary lung carcinomas (208 adenocarcinomas, 101 squamous cell carcinomas, and 61 large cell carcinomas) and 95 malignant mesotheliomas, using a pro-SP-B antiserum and a monoclonal TTF-1 antibody with a biotin-streptavidin detection system. Immunostaining for pro-SP-B was detected in 57% of adenocarcinomas, and 20% of large cell carcinomas. Immunoreactivity for TTF-1 was shown in 76% of adenocarcinomas and 26% of large cell carcinomas. Malignant mesotheliomas and squamous cell carcinomas did not stain with either antibody. The expression of pro-SP-B and TTF-1 in adenocarcinomas of the lung but not in malignant mesotheliomas shows that pro-SP-B and TTF-1 staining is useful in differentiating these neoplasms.
    Document Type:
    Reference
    Product Catalog Number:
    07-601
    Product Catalog Name:
    Anti-TTF-1 Antibody
  • Nonstructural NSs protein of rift valley fever virus interacts with pericentromeric DNA sequences of the host cell, inducing chromosome cohesion and segregation defects. 19889787

    Rift Valley fever virus (RVFV) is an emerging, highly pathogenic virus; RVFV infection can lead to encephalitis, retinitis, or fatal hepatitis associated with hemorrhagic fever in humans, as well as death, abortions, and fetal deformities in animals. RVFV nonstructural NSs protein, a major factor of the virulence, forms filamentous structures in the nuclei of infected cells. In order to further understand RVFV pathology, we investigated, by chromatin immunoprecipitation, immunofluorescence, fluorescence in situ hybridization, and confocal microscopy, the capacity of NSs to interact with the host genome. Our results demonstrate that even though cellular DNA is predominantly excluded from NSs filaments, NSs interacts with some specific DNA regions of the host genome such as clusters of pericentromeric gamma-satellite sequence. Targeting of these sequences by NSs was correlated with the induction of chromosome cohesion and segregation defects in RVFV-infected murine, as well as sheep cells. Using recombinant nonpathogenic virus rZHDeltaNSs210-230, expressing a NSs protein deleted of its region of interaction with cellular factor SAP30, we showed that the NSs-SAP30 interaction was essential for NSs to target pericentromeric sequences, as well as for induction of chromosome segregation defects. The effect of RVFV upon the inheritance of genetic information is discussed with respect to the pathology associated with fetal deformities and abortions, highlighting the main role played by cellular cofactor SAP30 on the establishment of NSs interactions with host DNA sequences and RVFV pathogenesis.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple