Human articular chondrocytes express multiple gap junction proteins: differential expression of connexins in normal and osteoarthritic cartilage. Mayan, MD; Carpintero-Fernandez, P; Gago-Fuentes, R; Martinez-de-Ilarduya, O; Wang, HZ; Valiunas, V; Brink, P; Blanco, FJ The American journal of pathology
182
1337-46
2013
Show Abstract
Osteoarthritis (OA) is the most common joint disease and involves progressive degeneration of articular cartilage. The aim of this study was to investigate if chondrocytes from human articular cartilage express gap junction proteins called connexins (Cxs). We show that human chondrocytes in tissue express Cx43, Cx45, Cx32, and Cx46. We also find that primary chondrocytes from adults retain the capacity to form functional voltage-dependent gap junctions. Immunohistochemistry experiments in cartilage from OA patients revealed significantly elevated levels of Cx43 and Cx45 in the superficial zone and down through the next approximately 1000 μm of tissue. These zones corresponded with regions damaged in OA that also had high levels of proliferative cell nuclear antigen. An increased number of Cxs may help explain the increased proliferation of cells in clusters that finally lead to tissue homeostasis loss. Conversely, high levels of Cxs in OA cartilage reflect the increased number of adjacent cells in clusters that are able to interact directly by gap junctions as compared with hemichannels on single cells in normal cartilage. Our data provide strong evidence that OA patients have a loss of the usual ordered distribution of Cxs in the damaged zones and that the reductions in Cx43 levels are accompanied by the loss of correct Cx localization in the nondamaged areas. | 23416160
|
Axonal synapses utilize multiple synaptic ribbons in the mammalian retina. Kim, HL; Jeon, JH; Koo, TH; Lee, UY; Jeong, E; Chun, MH; Moon, JI; Massey, SC; Kim, IB PloS one
7
e52295
2012
Show Abstract
In the mammalian retina, bipolar cells and ganglion cells which stratify in sublamina a of the inner plexiform layer (IPL) show OFF responses to light stimuli while those that stratify in sublamina b show ON responses. This functional relationship between anatomy and physiology is a key principle of retinal organization. However, there are at least three types of retinal neurons, including intrinsically photosensitive retinal ganglion cells (ipRGCs) and dopaminergic amacrine cells, which violate this principle. These cell types have light-driven ON responses, but their dendrites mainly stratify in sublamina a of the IPL, the OFF sublayer. Recent anatomical studies suggested that certain ON cone bipolar cells make axonal or ectopic synapses as they descend through sublamina a, thus providing ON input to cells which stratify in the OFF sublayer. Using immunoelectron microscopy with 3-dimensional reconstruction, we have identified axonal synapses of ON cone bipolar cells in the rabbit retina. Ten calbindin ON cone bipolar axons made en passant ribbon synapses onto amacrine or ganglion dendrites in sublamina a of the IPL. Compared to the ribbon synapses made by bipolar terminals, these axonal ribbon synapses were characterized by a broad postsynaptic element that appeared as a monad and by the presence of multiple short synaptic ribbons. These findings confirm that certain ON cone bipolar cells can provide ON input to amacrine and ganglion cells whose dendrites stratify in the OFF sublayer via axonal synapses. The monadic synapse with multiple ribbons may be a diagnostic feature of the ON cone bipolar axonal synapse in sublamina a. The presence of multiple ribbons and a broad postsynaptic density suggest these structures may be very efficient synapses. We also identified axonal inputs to ipRGCs with the architecture described above. | 23284975
|
Connexin-mediated communication controls cell proliferation and is essential in retinal histogenesis. Alexandre H Kihara,Taisa O Santos,Edgard J Osuna-Melo,Vera Paschon,Kallene S M Vidal,Priscilla S Akamine,Leandro M Castro,Rodrigo R Resende,Dânia E Hamassaki,Luiz R G Britto International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience
28
2010
Show Abstract
Connexin (Cx) channels and hemichannels are involved in essential processes during nervous system development such as apoptosis, propagation of spontaneous activity and interkinetic nuclear movement. In the first part of this study, we extensively characterized Cx gene and protein expression during retinal histogenesis. We observed distinct spatio-temporal patterns among studied Cx and an overriding, ubiquitous presence of Cx45 in progenitor cells. The role of Cx-mediated communication was assessed by using broad-spectrum (carbenoxolone, CBX) and Cx36/Cx50 channel-specific (quinine) blockers. In vivo application of CBX, but not quinine, caused remarkable reduction in retinal thickness, suggesting changes in cell proliferation/apoptosis ratio. Indeed, we observed a decreased number of mitotic cells in CBX-injected retinas, with no significant changes in the expression of PCNA, a marker for cells in proliferative state. Taken together, our results pointed a pivotal role of Cx45 in the developing retina. Moreover, this study revealed that Cx-mediated communication is essential in retinal histogenesis, particularly in the control of cell proliferation. | 19800961
|
Connexin45-containing neuronal gap junctions in rodent retina also contain connexin36 in both apposing hemiplaques, forming bihomotypic gap junctions, with scaffolding contributed by zonula occludens-1. Li, X; Kamasawa, N; Ciolofan, C; Olson, CO; Lu, S; Davidson, KG; Yasumura, T; Shigemoto, R; Rash, JE; Nagy, JI The Journal of neuroscience : the official journal of the Society for Neuroscience
28
9769-89
2008
Show Abstract
Mammalian retinas contain abundant neuronal gap junctions, particularly in the inner plexiform layer (IPL), where the two principal neuronal connexin proteins are Cx36 and Cx45. Currently undetermined are coupling relationships between these connexins and whether both are expressed together or separately in a neuronal subtype-specific manner. Although Cx45-expressing neurons strongly couple with Cx36-expressing neurons, possibly via heterotypic gap junctions, Cx45 and Cx36 failed to form functional heterotypic channels in vitro. We now show that Cx36 and Cx45 coexpressed in HeLa cells were colocalized in immunofluorescent puncta between contacting cells, demonstrating targeting/scaffolding competence for both connexins in vitro. However, Cx36 and Cx45 expressed separately did not form immunofluorescent puncta containing both connexins, supporting lack of heterotypic coupling competence. In IPL, 87% of Cx45-immunofluorescent puncta were colocalized with Cx36, supporting either widespread heterotypic coupling or bihomotypic coupling. Ultrastructurally, Cx45 was detected in 9% of IPL gap junction hemiplaques, 90-100% of which also contained Cx36, demonstrating connexin coexpression and cotargeting in virtually all IPL neurons that express Cx45. Moreover, double replicas revealed both connexins in separate domains mirrored on both sides of matched hemiplaques. With previous evidence that Cx36 interacts with PDZ1 domain of zonula occludens-1 (ZO-1), we show that Cx45 interacts with PDZ2 domain of ZO-1, and that Cx36, Cx45, and ZO-1 coimmunoprecipitate, suggesting that ZO-1 provides for coscaffolding of Cx45 with Cx36. These data document that in Cx45-expressing neurons of IPL, Cx45 is almost always accompanied by Cx36, forming "bihomotypic" gap junctions, with Cx45 structurally coupling to Cx45 and Cx36 coupling to Cx36. Full Text Article | 18815262
|
Expression of connexins 36, 43, and 45 during postnatal development of the mouse retina. Alexandre Hiroaki Kihara, Leandro Mantovani de Castro, Mônica Aparecida Belmonte, Chao Yun Irene Yan, Anselmo Sigari Moriscot, Dânia Emi Hamassaki Journal of neurobiology
66
1397-410
2006
Show Abstract
Gap junction channels formed by connexins (Cx) may play essential roles in some processes that occur during retinal development, such as apoptosis and calcium wave spread. The present study was undertaken to determine the distribution pattern of Cx36, Cx43, and Cx45 by immunofluorescence, as well as their gene expression levels by quantitative PCR during postnatal development of the mouse retina. Our results showed an increased expression of neuronal Cx36 from P1 until P10, when this Cx reached adult levels, and it was mainly distributed in the outer and inner plexiform layers. In turn, Cx43 was almost absent in retinal progenitor cells at P1, it became more prominent in glial cell processes about P10, and did not change until adulthood. Double-labeling studies in situ and in vitro with antivimentin, a Müller cell marker, confirmed that Cx43 was expressed by these cells. In addition, quantitative PCR showed that Cx43 and vimentin shared very similar temporal expression patterns. Finally, in contrast to Cx36 and Cx43, Cx45 mRNA was strongly down-regulated during development. In early postnatal days, Cx45 was seen ubiquitously distributed throughout the retina in cells undergoing proliferation and differentiation, as well in differentiated neurons. In adult retina, this protein had a more restricted distribution both in neurons and glial cells, as confirmed in situ and in vitro. In conclusion, we observed a distinct temporal expression pattern for Cx36, Cx43, and Cx45, which is probably related to particular roles in retinal function and maintenance of homeostasis during development of the mouse retina. | 17029293
|
Electrical synapses in retinal ON cone bipolar cells: subtype-specific expression of connexins. Han, Y; Massey, SC Proceedings of the National Academy of Sciences of the United States of America
102
13313-8
2005
Show Abstract
Retinal bipolar cells are known to form a complex, interconnecting network through electrical synapses that are either heterologous (with amacrine cells) or homologous (with other bipolar cells). These electrical synapses can be functionally as important as chemical synapses because their distinct properties provide a different character for the network. Much less is known, however, about electrical synapses in retinal bipolar cells than about chemical synapses. Here we report the molecular basis for electrical synapses in retinal bipolar cells, particularly ON cone bipolar cells. We have found variable connexin 36 (cx36) expression in different types of ON cone bipolar cells: cx36 message was found in some, but not all, ON cone bipolar cells (4 of 14 cells). In one specific type of ON cone bipolar cell (BPGus-GFP), however, cx36 was detected in 17 of 19 cells. Moreover, we have located cx36 puncta at the axonal terminals of BPGus-GFP cells, and we have found that these BPGus-GFP-associated cx36 puncta always colocalized with AII amacrine cell processes. Molecular and immunocytochemical evidence obtained in this study also shows that connexin 45 (cx45) is not present in BPGus-GFP cells. Taken together, our results suggest that connexins are expressed in bipolar cells in a neuronal subtype-specific manner and that cx36/cx36 gap junctions form the heterologous electrical synapses between AII amacrine cells and BPGus-GFP cells. Our findings imply that visual information can be differently processed by distinct subtypes of ON cone bipolar cells via electrical synapses. Full Text Article | 16150718
|